Oligorecurrent prostate cancer: what is it?

Dr Julia Murray

Consultant Clinical Oncologist

Royal Marsden Hospital and Institute of Cancer Research, London

Conflicts of interest

Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports	
Receipt of honoraria or consultation fees	Bayer, Ferring, Janssen
Stock shareholder	
Other support (please specify):	

Decision tree for classification of oligometastatic disease

Lancet Oncol 2020; 21: e18-28

Metachronous oligorecurrence

Metachronous oligorecurrence

- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Systemic therapy-free interval
- T0: First time diagnosis of new oligometastases (red) >6 months after diagnosis of cancer

Lancet Oncol 2020; 21: e18–28

PROSCA 2022

Biology of prostate cancer metastasis

• Halsted theory (1894)

 Cancer spreads in an orderly fashion from the primary site to regional lymphatics to distant locations

Biology of prostate cancer metastasis

• Fisher theory (1980)

• Cancer is inherently a systemic disease, even if it is evident only locally

Biology of prostate cancer metastasis

• Hellman (1994)

- Cancer exists in various degrees of clonal evolution, with varying metastatic potential, which evolves over time.
- Concept of OMD represents just one timepoint along the evolution of disease a point which could represent an intermediate state between localized and widely metastatic disease in which cancer cells have limited metastatic potential and thus may be amenable to cure with total elimination of disease burden

Imaging in patients with biochemical recurrence

6.3.4.4. Summary of evidence and guidelines for imaging in patients with biochemical recurrence

Recommendations	Strength rating
Prostate-specific antigen (PSA) recurrence after radical prostatectomy	
Perform prostate-specific membrane antigen (PSMA) positron emission tomography (PET) computed tomography (CT) if the PSA level is > 0.2 ng/mL and if the results will influence subsequent treatment decisions.	Weak
In case PSMA PET/CT is not available, and the PSA level is ≥ 1 ng/mL, perform fluciclovine PET/CT or choline PET/CT imaging if the results will influence subsequent treatment decisions.	Weak
PSA recurrence after radiotherapy	
Perform prostate magnetic resonance imaging to localise abnormal areas and guide biopsies in patients fit for local salvage therapy.	Weak
Perform PSMA PET/CT (if available) or fluciclovine PET/CT or choline PET/CT in patients fit for curative salvage treatment.	Strong

PROSCA 2022

Imaging for oligometastatic disease

Туре	Imaging Method	Strengths	Limitations
Conventional	Contrast-enhanced thoraco-abdomino-pelvic CT	 Allows for whole-body imaging²¹ Widely available and affordable²¹ 	 Poor sensitivity and specificity for detection of LN mets (sensitivity < 40%)^{16,18} Suboptimal for detection of bone mets^{16,21}
	^{99m} Tc-MDP bone scintigraphy	 Consistency for classification of M1 vs M0 disease²¹ Most widely used method to detect BMs²¹ Widely available and affordable^{17,21} 	> Misses metastatic lesions in bone marrow ²¹
Next generation	Fluciclovine (¹⁸ F)-PET	 As good as choline-PET¹² Identify both bony and soft tissue lesions¹² 	> Accuracy depends on PSA levels ¹²
	¹⁸ F/ ¹¹ C-choline PET/CT	> Good specificity (92–95%) in LN mets ^{77,78}	 > LNs: Modest sensitivity in detecting LN mets (49.2–62%)¹² > High false positive rates with reactive LNs¹² > Reduced sensitivity with low PSA values¹²
	⁶⁸ Ga-PSMA PET/CT	 Superior detection rates compared to other PET tracers¹² Able to identify small lesions at low PSA values¹² 	 > High false negative rates at low PSA values¹² > Additional studies are needed to confirm results
	WB-MRI	 > High sensitivity and specificity (>98%)¹² > High inter-observer agreement^{21,22} > No exposure to ionizing radiations¹¹ 	 Long scanning time, inter-scanner variability, susceptibility to motion and other artefacts, high costs¹⁷ Not widely used at present¹²

Marvaso G et al. Cancer Management and Research 2022:14 89–101

Oligorecurrent nodal disease

• PET has enabled recurrences to be detected earlier and more accurately

- Nodal recurrences the most dominant pattern of relapse
- Retrospective studies have explored:
 - Salvage lymph node dissection
 - Stereotactic body radiotherapy
 - Elective nodal radiotherapy

Oligorecurrent nodal disease

- OLIGOPELVIS GETUG P07 trial (reported)
 - First prospective, non randomized phase 2 trial
 - Median PFS: 3.8 years (Supiot S et al. Eur Urol 2021)
- OLIGOPELVIS2 trial (*recruiting*)
 - Phase 3 trial comparing intermittent ADT versus intermittent ADT + salvage pelvic RT
- PEACE V STORM trial (follow up)
 - MDT + 6/12 ADT versus salvage pelvic RT + 6/12

Reported prospective clinical trials

Study	Disease Type	Metastatic Burden	Study Type	N	Randomization (if applicable)	Primary Outcome	Result	Toxicity
SABR- COMET	ORD	1-5 metastases	Phase II RCT	99**	RT MDT vs. Standard of care for their respective malignancies	OS	OS improved in MDT arm (5-year OS 42.3% vs. 17.7%, p=0.006)	G5 in 4.5% of patients
STOMP	ORD	≤ 3 metastases	Phase II RCT	62	MDT vs. Observation	ADT-free survival	Median ADT-free survival improved in MDT arm (5-year ADT-free survival 34% vs. 8%, p=0.06)	No G2 or higher
ORIOLE	ORD	≤ 3 metastases	Phase II RCT	54	MDT vs. Observation	Rate of disease progression at 6 months	Disease progression was improved in MDT cohort (Progression at 6 months 19% vs. 61%, p=0.005)	No G3 or higher toxicities
Glicksman et al.	ORD	No limit	Single-arm Phase II Trial	37	PSMA-PET- guided MDT with SBRT or surgery, without ADT	Biochemical response	60% overall response rate with 22% having complete response	No G3 or higher toxicities
Kneebone et al.	ORD	1-3 nodal or bone metastases	Single-arm Phase II Clinical Trial	57	SBRT to metastatic sites without ADT	Biochemical failure***	At median follow up of 16 months, median bDFS was 11 months, with 31.9% bDFS at 15 months	No G3 or higher
Siva et al.	ORD	1-3 nodal or bone metastases	Feasibility Study	33	One fraction of SBRT to each lesion	Feasibility and tolerability	All but one patient completed the prescribed dose to metastatic sites	One patient with G3

Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial

- BCR after primary PCa treatment with curative intent
- 3 or fewer extracranial metastases on choline PET/CT and non-castrate testosterone
- Random assignment 1:1 to either surveillance or MDT of all detected lesions (surgery or stereotactic body radiotherapy)
- Primary endpoint: ADT-free survival
 - ADT started at symptomatic progression, progression to >3 metastases, or local progression of known metastases

Median F/U = 3 years

Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial

Median F/U = 5 years

Ost P et al. JCO 2020

PROSCA 2022

- BCR after primary PCa treatment with curative intent
- 3 or fewer extracranial metastases on choline PET/CT and non-castrate testosterone
- Random assignment 1:1 to either surveillance or MDT of all detected lesions (surgery or stereotactic body radiotherapy)
- Primary endpoint: ADT-free survival
 - ADT started at symptomatic progression, progression to >3 metastases, or local progression of known metastases

ORIOLE Phase 2 RCT Observation vs SABR for oligometastatic prostate cancer

- 54 patients randomised 2:1
- 1-3 asymptomatic mets on conventional imaging, no larger than 5cm
- Primary outcome: proportion of men with disease at 6 months
- Initial management: 83% surgery and 17% RT
- Time to first recurrence: median 22 months

Long-Term Outcomes and Genetic Predictors of Response to Metastasis-Directed Therapy Versus Observation in Oligometastatic Prostate Cancer: Analysis of STOMP and ORIOLE Trials

Deek et al. JCO 2022

- Long term outcomes of MDT PFS
- Assess ability of a high-risk mutational signature to risk stratify outcomes after MDT
- High risk mutations defined as pathogenic somatic mutations within ATM, BRCA1/2, Rb1 or TP53
- Median F/U = 52.5 months
- Gemonic alterations appear to have prognostic value

Findings

- MDT + no high-risk mutation experienced the best outcomes
 - (median PFS 13.4 months versus 7.5 months)

 Observation + high-risk mutation experienced the poorest outcomes = median PFS 2.8 months

Deek et al. JCO 2022

Ongoing clinical trials

Study	Disease Type	Metastatic Burden	Study Type	Randomization (if applicable)	Primary Outcome
PLATON	<i>De novo</i> OMD and ORD	≤5 lesions	Phase III RCT	SOC* VS.	FFS at 6 years
NRG-GU011	ORD	≤5 lesions	Phase II RCT	MDT + placebo vs.	rPFS by conventional imaging
DART	ORD	≤5 lesions	Phase II RCT	MDT + relugolix MDT vs.	MFS at 2 years by PET
RADIOSA	ORD	≤3 lesions	Phase II RCT	MDT + darolutamide MDT vs. MDT + LHRH agonist/antagonist	PFS

OligoCare

EORTC

The future of cancer therapy

Real-world disease and treatment characteristics of oligometastatic cancer -

initial results of the ESTRO & EORTC E²-RADIatE OligoCare cohort

Matthias Guckenberger¹, Umberto Ricardi², MartaScorsetti³, Panagiotis Balermpas¹, Yolande Lievens⁴, Filippo Alongi⁵, Lorenzo Livi⁶, Pètra Braam⁷, Barbara Alicja Jereczek-Fossa⁸, Karin Stellamans⁹, Luc Verbeke¹⁰, Heike Peulen¹¹, Kaouthar Khanfir¹², Sara Ramella¹³, Thomas Zilli¹⁴, Xavier Geets¹⁵, Hossein Hemmatazad¹⁶, Giovanni Battista Ivaldi¹⁷, Ivica Ratosa¹⁸, Paul Jeene¹⁹, Beatrice Fournier²⁰, Nicolas Sauvé²⁰, Catherine Fortpied²⁰, Piet Ost

- 107.7

BACKGROUND

· Oligometastatic disease (OMD) has been recognized as a heterogeneous cancer state, and optimal multimodality treatment strategies remain unknown.

 OligoCare is a pragmatic prospective observational cohort of the E²-RADIatE platform, born of a collaboration between ESTRO and EORTC. Its aims are to identify patient, tumor, staging and treatment characteristics influencing overall survival after radical radiotherapy for oligometastatic breast, colorectal, prostate and non-small-cell lung cancers (NSCLC).

METHODS

· Here we report the first results from the OligoCare cohort, based on a snapshot of the database taken on the 4th of February 2021.

· Patients were eligible to the OligoCare cohort if all cancer lesions were treated with radical intent. Radical radiotherapy must be a component of treatment, without a limit regarding the maximum number of oligometastases.

. The population for this analysis was a subset of eligible patients with information on primary disease, history of metastatic disease and current OMD lesions.

FIGURE 1: Flowchart of the analysis population

TABLE 1: Number of fractions TABLE 2: Dose per fractions (N = 395 irradiated lesions) (N = 395 irradiated lesions)	TABLE 2: Dose per fraction, BED (N = 395 irradiated lesions) Planned mean dose per fraction to the		
Number of fractions Planned mean dose per fraction to			
1 45 (12.0) CTV/ITV (Gy)			
3 128 (34.2) Median	9.8		
4 21 (5.6) Max	39.0		
5 122 (32.6) Q1-Q3	7.7 - 13.0		
6 21 (5.6) N obs	320		
7 1 (0.3) Biologically Effective Dose (BED, in	Gy)		
8 15 (4.0) Median	74.0		
10 19 (5.1) Max	219.9		
12 2 (0.5) Q1-Q3	59.7 - 107		
Missing 21 N obs	320		

200

*

FIGURE 2: Frequency of OMD type per primary cancer type

For more information on the E2-RADIatE platform: E2-RADIatE – The new platform for radiotherapy

Poster #PD-PD-0740

RESULTS · 328 / 467 eligible patients were selected for this analysis (Figure 1).

- Prostate cancer was the most frequent primary tumor (42%).
- Diagnosis of OMD included PET-imaging in 77% and MRI imaging in 16% of the patients.
- · Patients were treated for de-novo, repeat or induced OMD in 58%, 30% or 12% of the cases, respectively (Figure 2).
- The vast majority of patients in the analysis population (89.9%) had oligometastatic lesions in only one organ site.
- · 395 irradiated lesions were reported for the 328 patients:
- · The most commonly used radiotherapy delivery device, image guidance technology and treatment delivery techniques were C-arm linacs (84% of OMD lesions), Cone-beam CT image guidance (82% of OMD lesions) and VMAT treatment delivery (77% of OMD lesions), respectively.
- Median number of fractions was 4 (range 1-12), median planned mean CTV/ITV dose per fraction was 9.8 Gy (maximum: 39.0 Gy) and median BED was 74.0 Gy (α/β=10, maximum: 219.9 Gy) (Tables 1 and 2).

CONCLUSION

· Feasibility of the OligoCare prospective registry trial has been demonstrated to assess real-world patterns of practice of radical radiotherapy for oligometastatic disease.

· Patients with all OMD states were included, most frequently de-novo OMD. · High-quality follow-up data capture will be required to assess factors influencing outcome of oligometastatic patients treated with radical radiotherapy.

- Management of biochemical recurrence evolving with next generation imaging such as PSMA PET-CT
 - ? allow modification of thresholds for investigation
- Oligometastatic recurrence role of SBRT to delay time for lifelong ADT
- Development of clinical, molecular and genetic biomarkers to aid classification and personalisation for management of oligometastatic disease

