

Radiotherapy in Very High-Risk Prostate Cancer

Alberto Bossi

Radiation Oncologist

Amethyst Radiotherapy, Paris, France

Conflicts of interest

Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports	
Receipt of honoraria or consultation fees	Astellas, BMS, Elekta, Ipsen, Janssen, Myovant
Stock shareholder	
Other support (please specify):	

RT for High-Risk PCa: what we know...

RT for High-Risk PCa: what we know...

High prostate dose (= dose/response relationship) IMRT-IGRT / BT boost (LDR, HDR)

Trial	n	PCa stage	RT Dose	Follow-up	Outcome	Results
MD Anderson study <mark>2011</mark>	301	T1- T3 , N0, M0, PSA 10 ng/mL vs. PSA > 10 ng/mL	70 vs.78 Gy	9 yr.	DSM vs. other cause of death	High risk/PSA > 10 16% vs 4% DSM Higher risk: 15% vs 2% DSM
PROG 95-09 2010	393	T1b-T2b PSA 15 ng/mL 75% ISUP grade < 1	70.2 vs.79.2 Gy	8.9 yr.	10-year ASTRO BCF	32% vs 17% BFailure
MRC RT01 2014	843	T1b- T3a , N0, M0 PSA < 50 ng/mL neoad ADT	64 vs. 74 Gy	10 yr.	BFS; OS	43% vs 55% BFreeSurv
Dutch RCT 2014	664	T1b- T4 143 pts. with (neo) adj ADT	68 vs. 78 Gy	110 mo.	Phoenix BCF and/or clinical failure at 10 yr	43% vs 49% FFF
GETUG 06 2011	306	T1b- T3a , N0, M0 PSA < 50 ng/mL	70 vs. 80 Gy	61 mo.	BCF (ASTRO)	39% vs 28% BFailure
RTOG 0126 2018	1532	T1b-T2b ISUP grade 1 + PSA 10-20 ng/mL or ISUP grade 2/3 + PSA < 15 ng/mL	70.2 vs. 79.2 Gy	100 mo.	OS / DM BCF (ASTRO)	75% vs 76% OS 6% vs 4% DM 47% vs 31% BFailure

RT for High-Risk PCa: what we know...

High prostate dose (= dose/response relationship) IMRT-IGRT / BT boost (LDR, HDR)

RT + ADT better than RT alone: RTOG 92.02, EORTC 22861

Adjuvant ADT to RT: Phase III trials of EBRT +/- Androgen Deprivation

	Number of patients	Characteristics	Hormone therapy	Results
RTOG 85 -31 ¹	977	T3/N+	Goserelin life-long	OS, <i>P</i> < 0.004
EORTC 228612	415	T1-2, <mark>G3</mark>	Goserelin, 3 years	OS, <i>P</i> < 0.001
		T3-4	(AA, 1 month)	
RTOG <mark>92</mark> -02 ³	1,514	T2c-4 , N0	4 months TAB or	Gleason 8-10
		PSA < 150 ng/mL	Goserelin, 2 years	OS, <i>P</i> = 0.04
RTOG <mark>94</mark> -13 ⁴	1,292	T1c-4, PSA ≤ 100	PORT vs. WPRT,	WPRT+ NHT,
		ng/dL, risk N+ >15%	NHT vs. AHT	better PFS

OS: overall survival; AA: antiandrogen; TAB: total androgen blockade; PORT: prostate-only RT; WPRT: whole-pelvic RT; NHT: neoadjuvant hormone therapy; PFS: progression-free survival

¹Pilepich MV, et al. Proc Am Soc Clin Oncol 2003; ²Bolla M, et al. Lancet 2002; ³Hanks GE, et al. J Clin Oncol 2003; ⁴Roach M, et al. J Clin Oncol 2003

MARCAP Meta-Analysys: 12 eligible trials that provided individual patient data (10 853 patients) with a median follow-up of 11.4 years (IQR 9.0–15.0).

6.2.3.4 Guidelines for radical treatment of high-risk localised disease

Recommendations

Radical prostatectomy (RP)

Offer RP to selected patients with high-risk localised PCa as part of potential multi-modal therapy.

Extended pelvic lymph node dissection (ePLND)

Perform an ePLND in high-risk PCa.

Do not perform a frozen section of nodes during RP to decide whether to proceed with, or abandon, the procedure (see Section 6.2.4.1).

Radiotherapeutic treatment

In patients with high-risk localised disease, use intensity-modulated radiation therapy (IMRT) /volumetric modulated arc therapy (VMAT) plus image-guided radiation therapy (IGRT) with 76–78 Gy in combination with long-term androgen deprivation therapy (ADT) (2 to 3 years).

In patients with high-risk localised disease and good urinary function, use IMRT/VMAT plus IGRT with brachytherapy boost (either high-dose rate or low-dose rate), in combination with long-term ADT (2 to 3 years).

Therapeutic options outside surgery or radiotherapy

Do not offer either whole gland or focal therapy to patients with high-risk localised disease.

Only offer ADT monotherapy to those patients unwilling or unable to receive any form of local treatment if they have a prostate-specific antigen (PSA)-doubling time < 12 months, and either a PSA > 50 ng/mL or a poorly-differentiated tumour.

EAU - EANM - ESTRO -ESUR - ISUP - SIOG Guidelines on

Prostate Cancer

© European Association of Urology 2022

RT for High-Risk PCa: what we do know...

High prostate dose (= dose/response relationship) IMRT-IGRT / BT boost (LDR, HDR)

RT + ADT better than RT alone: RTOG 92.02, EORTC 22861

RT + ADT better than ADT alone: SPGC-7, INT:T94-0110

ADT alone vs RT + ADT for locally advanced PCa Intergroup T94-0110 RCT (NCIC, SWOG, MRC)

Randomised phase III trial, **1205 pts**: T3 – T4 T2 and iPSA > 40 ng/ml T2 and iPSA > 20 ng/ml and GS > 7

Lifelong ADT + / - RT (65 – 69 Gy) Median follow-up : 8 years

ADT alone vs RT + ADT for locally advanced PCa Intergroup T94-0110 RCT (NCIC, SWOG, MRC)

Fig 2. Overall survival (OS). ADT, androgen-deprivation therapy; HR, hazard ratio; RT, radiotherapy.

RT for HR-PCa: what we **do not know**...

Which (high) total dose in the prostate ?

Which technique ?

ADT: how long ?

Pelvic RT: yes/no ?

RT for HR-PCa: what we do not know...

Which (high) total dose in the prostate ?

Which technique ?

ADT: how long ?

Pelvic RT: yes/no ?

... RT + ADT *vs* Surg (+/- RT +/- ADT) ?

POP RT Trial

Murthy et al J Clin Oncol 39:1234-1242. © 2021

	POP RT
N+ Risk (Roach > 20)	Med.: 38% > 35%: 55% > 50%: 29%
Gleason	8-10: 49.1%
Staging	IRM pelv, TEP CT, PSMA TEP (80 %)
Pelvis	50Gy /25 fr
Prostate dose	68Gy / 25 fr SIB
Technique	IG-IMRT

5 ys Biochemical Free Survival

Patterns of disease recurrence at biochemical failure

Site of recurrence	WPRT	PORT
Regional pelvic nodes (With/without Distant Metastasis)	1	15
Distant metastases only	5	7
Local recurrence only	0	1
No radiological disease (only BCF)	0	2
Pattern unknown	2	4
Total	7	29

The "sliding window" of WPRT

Probability of a "pure" intraprostatic disease

Probability of a metastatic disease

The "sliding window" of WPRT

Probability of a "pure" intraprostatic disease

The "sliding window" of WPRT

Patient-reported quality of life outcomes for EORTC PR-25 urinary and bowel symptom domains.

Clinical Investigation

Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer

W. James Morris, MD, FRCPC, *^{,†} Scott Tyldesley, MD, FRCPC, *^{,†} Sree Rodda, MBBS, MRCP, FRCR, * Ross Halperin, MD, FRCPC, *^{,‡} Howard Pai, MD, FRCPC, *^{,§} Michael McKenzie, MD, FRCPC, *^{,†} Graeme Duncan, MB, ChB, FRCPC, *^{,†} Gerard Morton, MB, MRCPI, FRCPC, FFRRCSI, Jeremy Hamm, MSC, and Nevin Murray, MD, FRCPC^{†,#} International Journal of Radiation Oncology biology • physics

Int J Radiation Oncol Biol Phys, Vol. 98, No. 2, pp. 275-285, 2017

Median Follow-up: 6.5 yr

Primary endpoint: biochemical Progression Free Survival (ASTRO PSA nadir+2 ng/ml)

Morris, 2017

A Bossi

JAMA | Original Investigation

Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer

Amar U. Kishan, MD; Ryan R. Cook, MSPH; Jay P. Ciezki, MD; Ashley E. Ross, MD, PhD; Mark M. Pomerantz, MD; Paul L. Nguyen, MD; Talha Shaikh, MD; Phuoc T. Tran, MD, PhD; Kiri A. Sandler, MD; Richard G. Stock, MD; Gregory S. Merrick, MD; D. Jeffrey Demanes, MD; Daniel E. Spratt, MD; Eyad I. Abu-Isa, MD; Trude B. Wedde, MD; Wolfgang Lilleby, MD, PhD; Daniel J. Krauss, MD; Grace K. Shaw, BA; Ridwan Alam, MPH; Chandana A. Reddy, MS; Andrew J. Stephenson, MD; Eric A. Klein, MD; Daniel Y. Song, MD; Jeffrey J. Tosoian, MD; John V. Hegde, MD; Sun Mi Yoo, MD, MPH; Ryan Fiano, MPH; Anthony V. D'Amico, MD, PhD; Nicholas G. Nickols, MD, PhD; William J. Aronson, MD; Ahmad Sadeghi, MD; Stephen Greco, MD; Curtiland Deville, MD; Todd McNutt, PhD; Theodore L. DeWeese, MD; Robert E. Reiter, MD; Johnathan W. Said, MD; Michael L. Steinberg, MD; Eric M. Horwitz, MD; Patrick A. Kupelian, MD; Christopher R. King, MD, PhD

- "...large consortium of 1809 (very)-high risk PCa pts from 12 tertiary US centers"
- **RP** (+ postop RT, 43%): **639**
- **EBRT alone** (+ ADT, 22 m): **734**
- EBRT+ BT- boost (+ ADT, 12 m) : 436
 - (HDR: 40 %)
- median follow-up : 4.2 / 5.1 / 6.3 years

Kishan, Jama Oncol, 2018

JAMA | Original Investigation

Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer

JAMA | Original Investigation

Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer

Prostate cancer-specific survival Α Distant metastasis-free survival В 1.0 0.8 0.8 Probability of Survival al 0.6 Treatment Prostatectomy 0.4 EBRT EBRT + brachytherapy 0.2 0 Π 2 8 10 2 6 8 10 0 Δ 6 0 Δ Years Years

Kishan, Jama Oncol, 2018

Surgery vs Radiotherapy in the Management of Biopsy Gleason Score 9-10 Prostate Cancer and the Risk of Mortality

Derya Tilki, MD; Ming-Hui Chen, PhD; Jing Wu, PhD; Hartwig Huland, MD; Markus Graefen, MD, PhD; Michelle Braccioforte, MPH; Brian J. Moran, MD; Anthony V. D'Amico, MD, PhD (treatment propensity score-adjusted risk, plausibility index)

JAMA Oncol. doi:10.1001/jamaoncol.2018.4836 Published online November 15, 2018.

(very-) High Risk

Surgery vs Radiotherapy in the Management of Biopsy Gleason Score 9-10 Prostate Cancer and the Risk of Mortality

Derya Tilki, MD; Ming-Hui Chen, PhD; Jing Wu, PhD; Hartwig Huland, MD; Markus Graefen, MD, PhD; Michelle Braccioforte, MPH; Brian J. Moran, MD; Anthony V. D'Amico, MD, PhD (treatment propensity score-adjusted risk, plausibility index)

Tikli, Jama Oncol, 2018

(very-) High Risk

Surgery vs Radiotherapy in the Management of Biopsy Gleason Score 9-10 Prostate Cancer and the Risk of Mortality

Derya Tilki, MD; Ming-Hui Chen, PhD; Jing Wu, PhD; Hartwig Huland, MD; Markus Graefen, MD, PhD; Michelle Braccioforte, MPH; Brian J. Moran, MD; Anthony V. D'Amico, MD, PhD (treatment propensity score-adjusted risk, plausibility index)

Tikli, Jama Oncol, 2018

(very-) High Risk

JAMA Oncology | Original Investigation

Interplay Between Duration of Androgen Deprivation Therapy and External Beam Radiotherapy With or Without a Brachytherapy Boost for Optimal Treatment of High-risk Prostate Cancer A Patient-Level Data Analysis of 3 Cohorts

Amar U. Kishan, MD; Alison Steigler, BMath; James W. Denham, MD; Almudena Zapatero, MD; Araceli Guerrero, MD; David Joseph, MD;
Xavier Maldonado, MD; Jessica K. Wong, MD; Bradley J. Stish, MD; Robert T. Dess, MD; Avinash Pilar, MD; Chandana Reddy, MS; Trude B. Wedde, MD;
Wolfgang A. Lilleby, MD, PhD; Ryan Fiano, MPH; Gregory S. Merrick, MD; Richard G. Stock, MD; D. Jeffrey Demanes, MD; Brian J. Moran, MD;
Phuoc T. Tran, MD; Santiago Martin, MD; Rafael Martinez-Monge, MD; Daniel J. Krauss, MD; Eyad I. Abu-Isa, MD; Thomas M. Pisansky, MD;
C. Richard Choo, MD; Daniel Y. Song, MD; Stephen Greco, MD; Curtiland Deville, MD; Todd McNutt, PhD; Theodore L. DeWeese, MD;
Ashley E. Ross, MD, PhD; Jay P. Ciezki, MD; Derya Tilki, MD; R. Jeffrey Karnes, MD; Jeffrey J. Tosoian, MD; Nicholas G. Nickols, MD, PhD;
Prashant Bhat, BS; David Shabsovich, BS; Jesus E. Juarez, BS; Tommy Jiang, BS; T. Martin Ma, MD, PhD; Michael Xiang, MD, PhD; Rebecca Philipson, MD;
Albert Chang, MD, PhD; Patrick A. Kupelian, MD; Matthew B. Rettig, MD; Felix Y. Feng, MD; Alejandro Berlin, MD, MSc; Jonathan D. Tward, MD, PhD;
Brian J. Davis, MD, PhD; Robert E. Reiter, MD; Michael L. Steinberg, MD; David Elashoff, PhD; Paul C. Boutros, PhD; Eric M. Horwitz, MD;
Rahul D. Tendulkar, MD; Daniel E. Spratt, MD; Tahmineh Romero, MS

published on-line, 20/1/2022

Kishan, Jama Oncol, 2022

EBRT ALONE = **26,3** months of ADT

Kishan, Jama Oncol, 2022

Kishan, Jama Oncol, 2022

Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial

Focal Lesion Ablative Microboost in Prostate Cancer

Linda G. W. Kerkmeijer, MD, PhD^{1,2}; Veerle H. Groen, MD¹; Floris J. Pos, MD, PhD³; Karin Haustermans, MD, PhD⁴; Evelyn M. Monninkhof, PhD⁵; Robert Jan Smeenk, MD, PhD²; Martina Kunze-Busch, PhD²; Johannes C. J. de Boer, PhD¹; Jochem van der Voort van Zijp, MD, PhD¹; Marco van Vulpen, MD, PhD⁶; Cédric Draulans, MD, PhD⁴; Laura van den Bergh, MD, PhD⁷; Sofie Isebaert, PhD⁴; and Uulke A. van der Heide, PhD³

R <

Kerkmeijer et al, 2021 Journal of Clinical Oncology[®]

Standard Treatment	Focal Boost Treatment
287	284
70 (7)	70 (6)
N (%)	N (%)
4 (1)	2 (1)
43 (15)	43 (15)
240 (84)	239 (84)
	Standard Treatment 287 70 (7) N (%) 4 (1) 43 (15) 240 (84)

77 Gy, 35 fr (EQD2 81.8 Gy) +/- ADT

77 Gy, 35 fr (EQD2 81.8 Gy) +/- ADT + SIB on the mpMRI defined DIL of **95 Gy** (EQD2 115.8 Gy) +/- ADT

FIG 3. Predicted probability of biochemical failure up to 7 years as a function of achieved dose to the gross tumor volume (D98%; Gy).

Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial

Kerkmeijer et al, JCO 2021

Groen et al, Eur Urol 2022

	HR	C.I.
Local Failure Free Survival	0.33	0.14 – 0.78
Regional + Distant Mets Free Survival	0.58	0.35 – 0.93

RT + ADT for HRPCa: *the challenge*...

EORTC 22863 PHASE III TRIAL, Bolla, Lancet, 2002

Type of progression	Radiotherapy (n=208)	Combined treatment (n=207)		
Any clinical progression	90	27		
Local	15	3		
Local and regional	3	0		
Distant	56	22		
Local and distant	13	2		
Local, regional, and distan	it 3	0		
Table 2: Sites of disease progression				

"In our trial, the radiotherapy technique was conventional, far from being optimal. The contribution of radiotherapy to local control can be further improved by 3-D conformal radiotherapy..."

Bolla, 2002

treatment group O=number of deaths; N=number of patients.

Bolla, 2002

treatment group

O=number of deaths; N=number of patients.

treatment group

O=number of deaths; N=number of patients.

Bolla, 2002

treatment group O=number of deaths; N=number of patients.

- phase III RCT of the last 25-30 ys have tailored the role of RT in the management of High-Risk PCa.
- intensification strategy with long-term Androgen Deprivation Therapy should be the backbone of the RT management of High-Risk Pca.
- optimizing the local control with high-tech RT techniques seems essential to guarantee better results (role of EBRT+BT?, MRI-guided intra-prostatic boost?).
- de-intensification may also have a role in a well defined subgroup of High-Risk Pca patients.

