Impact of genomic classifiers on postoperative treatment

Alan Dal Pra, MD

Associate Professor of Radiation Oncology Director, Radiation Oncology Clinical Research Program Medical Director, Radiation Oncology Lennar Coral Gables Radiation Oncology Department, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine

Conflicts of interest

Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports	Veracyte/Decipher (institutional/sponsor research support)
Receipt of honoraria or consultation fees	Merck
Stock shareholder	None
Other support (please specify):	University of Miami (employment/leadership)

Prostate cancer is a (dynamic) spectrum of diseases

Conventional clinicopathologic factors DO NOT tell us the whole story!

Spec.trum = used to classify something, or suggest that it can be classified, in terms of its position on a scale between two extreme or opposite points.

Prognostic vs predictive biomarkers

https://www.fda.gov/drugs/biomarker-qualification-program/context-use

Prognostic Biomarkers:

 Measured before treatment to indicate long-term outcome for patients untreated or receiving SOC treatment (independent of treatment received).

Predictive Biomarkers:

 Measured before treatment to identify who is likely or unlikely to <u>benefit from</u> <u>a specific treatment.</u>

NCCN Prostate 2023

NCCN NCCN NCCN Network[®]

NCCN Guidelines Version 1.2023 Prostate Cancer NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF RISK STRATIFICATION

	Table 1. Initial	Risk Stratifica	ation for Clinica	Ily Localized Disease	
Category	ΤοοΙ	Predictive	Prognostic	Endpoint Trained For ^a	Level of Evidence for Validation ^b
	NCCN	No	Yes	See note ^c	1
01-1-1	STAR-CAP ²	No	Yes	PCSM	3
Clinical	CAPRA ^{11,d}	No	Yes	BCR	3
	MSKCC ¹²	No	Yes	BCR and PCSM ^f	3
AI	ArteraAl Prostate (category 2B) ^{5,e}	No	Yes	BCR, DM, PCSM ^g	1
	Decipher ¹³	No	Yes	DM	1
Gene Expression Testing	Prolaris ¹⁴	No	Yes	See note ^h	3
	Oncotype ¹⁵	No	Yes	Adverse pathology	3
Germline	HRR	No	Uncertain	See note ⁱ	4

- No predictive biomarker currently available
- Decipher is the first gene expression test considered to have level 1 of evidence

Review – Prostate Cancer

A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer

Neil K. Jairath^{a,†}, Alan Dal Pra^{b,†}, Randy Vince Jr.^c, Robert T. Dess^a, William C. Jackson^a, Jeffrey J. Tosoian^c, Sean M. McBride^d, Shuang G. Zhao^a, Alejandro Berlin^e, Brandon A. Mahal^{b,f}, Amar U. Kishan^g, Robert B. Den^h, Stephen J. Freedland^{i,j}, Simpa S. Salami^c, Samuel D. Kaffenberger^c, Alan Pollack^b, Phuoc Tran^k, Rohit Mehra¹, Todd M. Morgan^c, Adam B. Weiner^m, Osama Mohamadⁿ, Peter R. Carroll^o, Matthew R. Cooperberg^o, R. Jeffrey Karnes^p, Paul L. Nguyen^q, Jeff M. Michalski^r, Jonathan D. Tward^s, Felix Y. Fengⁿ, Edward M. Schaeffer^m, Daniel E. Spratt^{a,*}

Setting	Indication	# Studies	# Patients
	Active Surveillance	5	10,456
Bionov	Definitive Therapy	12	8,737
ыорѕу	Non-Metastatic Castrate Resistant	1	233
	Metastatic Hormone Sensitive	2	382
Deet DD	Early vs. Salvage Radiation	18	9,515
POST-RP	Salvage Therapy Intensity	4	1,084
	TOTAL	42	30,407

42 studies and more than 30,000 patients demonstrated that Decipher:

- is independently prognostic for overall survival, metastasis, PCSM, adverse pathology, and biochemical failure.
- is more accurate in stratifying patient risk than clinicopathologic variables alone.

Jairath, NK, Dal Pra A Vince Jr. R, et al. Eur Urol 2021

Individual Patient-Level Meta-Analysis After Prostatectomy to Predict Development of Metastatic Disease

Spratt et al., JCO 2017

Personalizing Postoperative RT using Genomic Classifiers

Question	Trial	Findings
RT timing	RADICALS-RT/RAVES/GETUG-AFU 17	adjuvant RT = early SRT
RT +/- ADT	RTOG 9601/GETUG-16/RTOG 0534	SRT + STADT > SRT
RT dose	SAKK 0910	64Gy = 70Gy
RT volume	RTOG 0534	SRT + STADT + PNRT > SRT
RT + ADT duration	RADICALS-HD	RT + LTADT > RT +STADT

RT timing - Adjuvant vs Salvage RT

Den et al, JCO 2015

RT timing - Adjuvant vs No Adjuvant RT

Dalela et al., JCO 2017

RT timing - Adjuvant vs No Adjuvant RT

Updates in Version 1.2023 of the NCCN Guidelines for Prostate Cancer from Version 4.2022 include: PROS-8A

- Footnote o modified: If higher grade and/or higher T stage is found during confirmatory testing, see PROS-2.
- Footnote t modified: Decipher molecular assay is recommended should be considered if not previously performed to inform adjuvant treatment if adverse features are found post-RP.

RT +/- ADT NRG/RTOG 9601: A Phase 3 Trial

Sample size: 760 patients Median follow up: 13 years

Primary endpoint: Overall survival (HR 0.77, p=0.04)

Shipley et al., NEJM 2017

<u>JAMA Oncol.</u> 2021 Apr; 7(4): 544–552. Published online 2021 Feb 11. doi: <u>10.1001/jamaoncol.2020.7671</u> PMCID: PMC7879385 PMID: <u>33570548</u>

Validation of a 22-Gene Genomic Classifier in Patients With Recurrent Prostate Cancer

An Ancillary Study of the NRG/RTOG 9601 Randomized Clinical Trial

Distant metastasis

Prostate Cancer Specific Mortality

Overall Survival

Feng et al., JAMA Oncol 2021

Decipher was independently prognostic for DM, PCSM and OS

Variable	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value
	Distant Metastases		PCSM		OS	
Decipher score	1.17 (1.05 - 1.32)	0.006*	1.39 (1.20 - 1.63)	<0.001*	1.17 (1.06 - 1.29)	0.002*
Treatment vs. Placebo	0.62 (0.39 - 0.97)	0.037*	0.53 (0.30 - 0.92)	0.024*	0.82 (0.57 - 1.19)	0.293
Age 65+ vs. 65-	1.30 (0.83 - 2.06)	0.247	1.52 (0.88 - 2.66)	0.136	1.95 (1.33 - 2.91)	<0.001
Black vs. non-Black	0.88 (0.28 - 2.13)	0.798	0.86 (0.17 - 2.73)	0.827	1.35 (0.57 - 2.77)	0.467
Gleason 8-10 vs. ≤7	2.11 (1.24 - 3.47)	0.007*	2.53 (1.38 - 4.49)	0.003*	1.87 (1.20 - 2.85)	0.007*
T3 vs. T2	1.42 (0.82 - 2.58)	0.220	2.01 (0.97 - 4.62)	0.061	1.24 (0.79 - 1.97)	0.350
Entry PSA	1.16 (0.88 - 1.49)	0.264	1.37 (1.01 - 1.80)	0.041*	1.08 (0.84 - 1.35)	0.530
Positive surgical margins	0.71 (0.44 - 1.16)	0.167	1.26 (0.68 - 2.44)	0.465	0.98 (0.64 - 1.53)	0.919
Non-nadir vs. nadir PSA (<0.5ng/ml)	1.31 (0.62 - 2.51)	0.456	2.10 (0.92 - 4.26)	0.074	1.98 (1.13 - 3.30)	0.019*

Hazard ratios of GC were per 0.1 unit increased.

Feng et al., JAMA Oncol 2021

Less ADT benefit in Low Decipher patients

Full cohort

Feng et al., JAMA Oncol 2021

Less ADT benefit in Low Decipher patients

Early salvage, PSA < 0.7 ng/mL

- PSA < 0.7 ng/ml was not a stratification factor
- small sample size, no SS interaction between Decipher and ADT use

Feng et al., JAMA Oncol 2021

RT dose SAKK 09/10, Phase 3 Trial

- N= 350 patients
- 24 centers in Switzerland, Germany, and Belgium.
- Patients with biochemical progression (PSA >0.1 to 2 ng/mL at randomization)
- 64 Gy vs 70 Gy to the prostate bed
- No ADT or pelvic nodal radiotherapy

No difference in FFBP at median FU 6 yrs

Ghadjar et al., Eur Urol 2021

ORIGINAL ARTICLE

Validation of the Decipher genomic classifier in patients receiving salvage radiotherapy without hormone therapy after radical prostatectomy – an ancillary study of the SAKK 09/10 randomized clinical trial $\stackrel{\mathcal{P}}{\approx}$

*Pre-specified analysis *Contemporary samples, high lab QC passing rate (>97%)

Dal Pra et al., Ann Oncol 2022

Correlation of Decipher vs. other clinicopathologic variables

Dal Pra et al., Ann Oncol 2022

Decipher is a strong prognostic biomarker

		N (event)		5 yr Event-Free Est.			GC Risk Group (High vs Low-Intermediate)		Effect Size (95% Cl), p-val
	Decipher Analytic Cohort	Decipher Decipher Decipher Analytic Cohort Low-Int High		Decipher Decipher Decipher Analytic Cohort Low-Int High					
							Better Prognosis	Worse Prognosis	
Freedom from Biochemical Progression†	226 (88)	169 (57)	57 (31)	65% (58%-71%)	71% (64%-78%)	45% (32%-59%)		•	2.10 (1.34 - 3.30) 0.001*
Clinical Progression-Free Survival‡	226 (65)	169 (41)	57 (24)	76% (71%-82%)	80% (74%-86%)	65% (52%-79%)		•	2.26 (1.36 - 3.75) 0.002*
Rapid Biochemical Failure (≤ 18 mo)§	226 (37)	169 (21)	57 (16)	84%§§	88%§§	72%§§		•	2.87 (1.36 - 6.05) 0.006*
Freedom from Hormonal Treatment†	226 (40)	169 (22)	57 (18)	85% (80%-90%)	89% (84%-94%)	74% (61%-86%)		•	2.75 (1.48 - 5.11) 0.001*
Freedom from Distant Metastasis†	226 (38)	169 (21)	57 (17)	86% (81%-90%)	89% (84%-94%)	75% (63%-87%)		•	2.73 (1.45 - 5.16) 0.002*
Metastasis-Free Survival†	226 (47)	169 (28)	57 (19)	83% (77%-88%)	85% (79%-91%)	75% (63%-87%)		•	2.26 (1.27 - 4.04) 0.006*
							0 1 Effect Siz	2 3 4 e (95% Cl)	

Dal Pra et al., Ann Oncol 2022

Decipher is a strong prognostic biomarker

Dal Pra et al., Ann Oncol 2022

Decipher is a strong prognostic biomarker

High Decipher \rightarrow > 2x increased risk of progression HR 2.1 (95% IC 1.3-3.3, p=0.002) on MVA

Dal Pra et al., Ann Oncol 2022

Decipher - Early vs Late Salvage RT

GC high- vs. low/intermediate HRs:

- 1.84 (95%CI 0.99-3.43, for early salvage RT (PSA ≤ 0.5 ng/mL)
- 3.07 (95%CI 1.39-6.8, for late salvage RT (PSA > 0.5 ng/mL)

*Cox PH MVA results adjusting for clinical variables and randomization arm as strata

Dal Pra et al., Ann Oncol 2022

Decipher - Early vs Late Salvage RT

GC high- vs. low/intermediate HRs:

- 1.84 (95%CI 0.99-3.43, for early salvage RT (PSA ≤ 0.5 ng/mL)
- 3.07 (95%CI 1.39-6.8, for late salvage RT (PSA > 0.5 ng/mL)

*Cox PH MVA results adjusting for clinical variables and randomization arm as strata

Dal Pra et al., Ann Oncol 2022

Decipher vs. pre-SRT PSA

Decipher may help define subgroups associated with improved outcomes when treated with very early vs early vs late SRT

*PSA < 0.2 ng/ml was not a stratification factor

Dal Pra et al., Ann Oncol 2022

RT dose? Decipher does not predict benefit from dose escalation

Dal Pra et al., Ann Oncol 2022

Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis

Shuang G Zhao*, S Laura Chang*, Daniel E Spratt, Nicholas Erho, Menggang Yu, Hussam Al-Deen Ashab, Mohammed Alshalalfa, Corey Speers, Scott A Tomlins, Elai Davicioni, Adam P Dicker, Peter R Carroll, Matthew R Cooperberg, Stephen J Freedland, R Jeffrey Karnes, Ashley E Ross, Edward M Schaeffer, Robert B Den, Paul L Nguyen†, Felix Y Feng†

PORTOS is an expression signature of 24 DNA damage repair, and immune pathway genes

Patients with high PORTOS scores may benefit from post-op RT

Zhao et al., Lancet Oncol 2016

Presentation #160

7

Prognostic and Predictive Performance of a 24-Gene Post-Operative Radiation Therapy Outcomes Score (PORTOS) in a Phase 3 Randomized Trial of Dose-Intensified Salvage Radiotherapy after Radical Prostatectomy (SAKK 09/10)

Alan Dal Pra¹, Daniel R. Zwahlen², Vinnie Y. Liu³, Stefanie Hayoz⁴, Daniel E. Spratt⁵, Elai Davicioni³, Yang Liu³, James A. Proudfoot³, Corinne Schär⁴, Tobias Hölscher⁶, Philipp Gut⁷, Buelent Polat⁸, Guido Hildebrandt⁹, Arndt-Christian Mueller¹⁰, Ludwig Plasswilm¹¹, Felix Y. Feng¹², Alan Pollack¹, George Thalmann¹³, Daniel M. Aebersold¹⁴, and Pirus Ghadjar^{14,15}

¹Department of Radiation Oncology, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL
²Department of Radiation Oncology, Kantonsspital Graubünden, Chur, now at Kantonsspital Winterthur, Winterthur, Switzerland
³Veracyte Inc., San Diego, CA
⁴SAKK Coordinating Center, Bern, Switzerland
⁵University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
⁶Department of Radiation Oncology, University Hospital Dresden, Dresden, Germany
⁷Department of Radiation Oncology, Kantonsspital Luzern, Switzerland, now at Hirslanden Hospital Group, Zürich, Switzerland
⁸University hospital Wuerzburg, Wuerzburg, Germany
⁹Department of Radiation Oncology, University Hospital Rostock, Rostock, Germany
¹⁰Department of Radiation Oncology, Eberhard Karls University, Tübingen, Germany
¹¹Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Sankt Gall, Switzerland
¹²Helen Diller Family Comprehensive Cancer Center, University Hospital, Bern, Switzerland
¹⁴Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
¹⁵Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Germany

RT volume

available at www.sciencedirect.com journal homepage: euoncology.europeanurology.com

European Association of Urology

Genomic Risk Predicts Molecular Imaging-detected Metastatic Nodal Disease in Prostate Cancer

Melody J. Xu^a, Zachary Kornberg^b, Adam J. Gadzinski^b, Dongmei Diao^{a,c}, Janet E. Cowan^b, Susan Y. Wu^a, Lauren Boreta^a, Daniel E. Spratt^d, Spencer C. Behr^e, Hao G. Nguyen^b, Matthew R. Cooperberg^b, Elai Davicioni^f, Mack Roach 3rd^a, Thomas A. Hope^e, Peter R. Carroll^b, Felix Y. Feng^{a,b,*}

^aDepartment of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA; ^bDepartment of Urology, University of California San Francisco, San Francisco, San Francisco, CA, USA; ^cDepartment of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; ^dDepartment of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; ^eDepartment of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; ^fGenomeDx Inc., San Diego, CA, USA

- 91 NCCN int/high-risk patients with Decipher and PSMA PET at recurrence
- Higher Decipher score associated with PSMA (+) nodal disease
- Higher Decipher ~8x as likely to harbor PSMA (+) positive lymph nodes

Xu et al., Eur Urol Focus 2019

RT volume RTOG 0534 – addition of pelvic nodal RT to PBRT + ADT improves PFS

Can Decipher help select patients for pelvic RT? Correlative studies in progress

Pollack et al., Lancet 2022

SRT + ADT duration?

Which patients need long term ADT?

At **10 years**: MFS 72% in short term vs 78% in long term

Absolute MFS benefit 6% No statistically significant OS benefit demonstrated

Number needed to treat: ~17

ESMO 2022

Clinical qualification of transcriptome signatures for advanced prostate cancer starting androgen deprivation therapy with or without abiraterone acetate and prednisolone: an ancillary study of the STAMPEDE trial

Marina Parry, Emily Grist, Christopher Brawley, James Proudfoot, Larissa Mendes, Sharan Lall, Alex Hoyle, Ashwin Sachdeva, Yang Liu, Claire Amos, Matthew Sydes, Robert Jones, Max Parmar, Felix Feng, Christopher Sweeney, Noel Clarke, Elai Davicioni, Nick James, Louise Brown, Gerhardt Attard **on behalf of the STAMPEDE investigators**

@marina_parry, @EmilyGrist1, @LarissaSTMendes, @AshwinUrol, @mattsydes, @ChrisSweens1, @Davicioni, @Prof_Nick_James, @AttardLab

ClinicalTrials.gov number, NCT00268476 & Current Controlled Trials number, ISRCTN78818544

Absolute benefit of adding AAP to ADT varies by Decipher score

Event rate calculated using flexible parametric modelling adjusted for baseline characteristics

Some practical scenarios

Undetectable PSA	Low/Int Deciphe	er —	Observation / early SRT
High risk features	High Decipher		Discuss adjuvant RT
PSA < 0.5 ng/mL	Low/Int Deciphe	er ───►	SRT +/- STADT
High risk features	High Decipher		SRT + PNRT + STADT
PSA >= 0.5 ng/mL High risk features	PSMA PET (-)	Low/Int Decipher	SRT + PNRT + STADT
		High Decipher	SRT + PNRT + LTADT?
	BSMA PET (+)	N+	SRT + PNRT + LTADT + Abi

Conclusions

- Genomic classifiers have shown to be prognostic markers and may help individualize treatment decisions in the postoperative setting
- Decipher has the strongest level of evidence for genomic classifiers, particularly after surgery
 - salvage RT +/- ADT and postoperative RT timing
- Additional evidence is needed to support other treatment decisions
 - How to combine molecular imaging and genomic classifiers?
 - Can we use molecular imaging and genomic classifiers to select patients for Tx de-escalation/observation?
- Predictive biomarkers are urgently needed to guide treatment selection not only for intensification but to minimize the use of unnecessary treatments.