

11th Belgian Multidisciplinary Meeting on Urological Cancers

SYSTEMIC TREATMENT CHOICES IN RCC: WHO NEEDS WHAT ?

15/03/2024

Pr. Christine Gennigens MD, PhD Medical Oncology Department

FINANCIAL DISCLOSURE

SPEAKER'S FEE

BMS; Ipsen; GSK; MSD

AstraZeneca; Pharmamar; Roche

Astra Zeneca; BMS; Esaï; GSK; MSD; Pfizer

CONSULTANCE

GSK; MSD; Deciphera

Ipsen; GSK; Pfizer; MSD; AstraZeneca

FIRST-LINE METASTATIC DISEASE

SHOULD WE TREAT « ALL » THE METASTATIC PATIENTS ???

LIMITED DISEASE BURDEN AND ASYMPTOMATIC

- Close active surveillance !!!
- Initiation of systemic therapy at onset of new lesions, accelerated growth of existing lesions, or symptomatic disease

IF "OLIGO-METASTATIC" DISEASE

PHASE III-RANDOMIZED CONTROLLED TRIALS-RESULTS

LANDSCAPE HAS CHANGED CONSIDERABLY

RCTs

PHASE

IO + TKI

- Benefit in PFS but not in OS
- Anti-PDL1 ?

JAVELIN RENAL 101

IMMOTION 151

Outcomes for International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Groups in Contemporary First-line | European Urology 2023 **Combination Therapies for Metastatic Renal Cell Carcinoma**

Matthew S. Ernst^a, Vishal Navani^a, J. Connor Wells^a, Frede Donskov^b, Naveen Basappa^c, Chris Labaki^d, Sumanta K. Pal^e, Luis Meza^e, Lori A. Wood^f, D. Scott Ernst^g, Bernadett Szabados^h, Rana R. McKayⁱ, Francis Parnis^j, Cristina Suarez^k, Takeshi Yuasa^l, Aly-Khan Lalani^m, Ajjai Alvaⁿ, Georg A. Bjarnason^o, Toni K. Choueiri^d, Daniel Y.C. Heng^{a,*}

CHECKMATE 214 TRIAL 1096pts mFU = 99 mths

FAVO/INTERM./POOR = 23% / 61% / 17%

OVERALL SURVIVAL (OS)

INTERMEDIATE/POOR

KEYNOTE-426 TRIAL861 ptsmFU = 67 mths

FAVO/INTERM./POOR = 32% / 55% / 13%

INTERMEDIATE/POOR

CHECKMATE-9ER TRIAL _____ mFU= 55 mths

FAVO/INTERM./POOR = 23% / 58 % / 19%

OVERALL SURVIVAL (OS)

CLEAR TRIAL

mFU= 49.8 mths

^aPatients could receive a maximum of 35 pembrolizumab treatments.

FAVO/INTERM./POOR = 32% / 59 % / 9%

OVERALL SURVIVAL (OS)

WHAT IS THE **« BEST FIRST SHOT » ???**

NO HEAD TO HEAD (PROSPECTIVE) DATA EXIST

Which combination is the best ? IO + IO or IO + TKI

HEAD-TO-HEAD COMPARISONS

PROSPECTIVE DATA NOTHING

RETROSPECTIVE DATA

Zarrabi et al., ASCO 2021, Abstract 4535

Chun Loo Gan et al., ASCO GU 2021, Abstract 276

Wick-Gennigens et al., BSMO 2024 Abstract

NO STATISTICALLY DIFFERENCE

^^^^^^		ŤŤ 35-5	ř † 8%	
1L therapy	Centre type	Sample size	Patients receiving 2L therapy	
AxiPem, IpiNivo or TKI monotherapy ¹	Community	1,538	35% 37–53%	
IpiNivo or AxiPem ²	Specialist	99		
IpiNivo ³	Specialist	704	58%	
all patients (35-58%) therapy, highlighting the best treat	will receive the importance ment first	Danie sympo	l Heng, Ipsen satel sium, ESMO 2023	

WHAT IS THE BEST CANDIDATE FOR IO+IO ???

Particularly relevant with sarcomatoïd component...

MOLECULAR SUBTYPE CHARACTERISTICS

Subgroup (frequency)	ccrcc1 (33%)	ccrcc2 (41%)	ccrcc3 (11%)	ccrcc4 (15%)	7	
Outcome under sunitinib						
Early PD	22.22%	2.78%	0.00%	26.67%		
PR	40.74%	52.78%	70.00%	20.00%		
Median OS (month)	24	35	50	14		
Median PFS (month)	13	19		8		
Clinical characteristics		NOR	MAL_LIK	E		
IMDC						
Good prognosis	6%	21%	18%	7%		
Intermediate prognosis	69%	60%	64%	60%		
Poor prognosis	25%	18%	18%	33%		
MSKCC						
Good prognosis	10%	24%	27%	0%		
Intermediate prognosis	58%	50%	63%	93%		
Poor prognosis	32%	26%	9%	7%		
Molecular characteristics						
Pathology characteristics						
Mean inflammation intensity (scale 0–3)	1.3	1.2	0.8	2.2		
Mean sarcomatoid differentiation (%)	7.5	3.7	1.7	24.6 MMUN	E-HIGH	
Mutations						
VHL	46.67%	62.50%	20.00%	20.00%		
PBRM1	46.67%	37.50%	20.00%	0.00%		
Upregulated pathways	MYC targets	Glycolysis		Immunity		
	Glycolysis	Нурохіа		Apoptosis		
	Hypoxia			Chemotaxis		
				MYC targets		
IMMUNF	$\mathbf{LOW} \mid \mathbf{A}$	NGIO-HIGH			• 0.8	
				4		
MYC expression level	++	+	-	(ir	0.6-	
Methylation status	Hypermethylated $+$			a 3-	** 0	
Polycomb stem-cell phenotype	++		-	pite	B 0.4-	
Copy number amplification				e 2	E	
Proposal for names	MYC.UP	Classical	Normal I	ž 1.	0.2-	
				0-	0.0	
				Inflammation Sarcon	natoid PBRM1 mutation	VHL mutation
				differen	Alation	
		euselinck et a	L. 2015			
			,	CCrcc1		ccrcc4

EFFICACY OUTCOMES / SARCOMATOID DEDIFFERENTIATION

	CM 214 ⁴⁷		KN-426	KN-426 ⁶⁵		JAVELIN Renal 10	JAVELIN Renal 101 ⁶⁶		CM 9ER ⁶⁷		
Therapies	Nivo/Ipi	Sun	Pembro	/Axi	Sun	Avelumab/Axi	Sun	Nivo/Cabo	Sun	Len/Pem	Sun
Median OS (m)	NR	14.2	_		_	_	_	NR	19.7	NR	NR
OS HR	0.45		0.58			0.78		0.36		0.91	
(95% CI)	(0.30-0.70)		(0.21–1	.59)		(0.36–1.72)		(0.16–0.82)		(0.32–2.58)	
Median PFS (m)	26.5	5.1	NR	8.4		7.0	4.0	10.9	4.2	11.1	5.5
PFS HR	0.54		0.54			0.57		0.39		0.39	
(95% CI)	(0.33–0.86)		(0.29–1	.00)		(0.32 - 1.00)		(0.22 - 0.70)		(0.18–0.84)	
ORR (%)	61	23	59	32		47	21	56	22	61	24
CR	19	3	12	0		4	0	9	2	-	-
PR	42	20	-	-		43	21	47	20	-	-
PD	20	23	-	-		15	36	12	34	-	-

CM 214 = CheckMate 214, KN-426 = KEYNOTE-426, CM 9ER = CheckMate 9ER, nivo = nivolumab, ipi = ipilimumab, sun = sunitinib, axi = axitinib, cabo = cabozantinib, len = lenvatinib, pem = pembrolizumab, OS = overall survival, m = months, NR = not reached, HR = hazard ratio, CI = confidence interval, ORR = objective response rate, CR = complete response, PR = partial response, PD = progressive disease.

Hahn et al., 2022

HTA ANY GRADE / GRADE 3+

Without rapid progression
When the primary goal is CURE
Only chance to use IPILIMUMAB

WHAT IS THE BEST CANDIDATE FOR IO+TKI ???

Particularly relevant in anatomical sites where tumor growth may lead to adverse consequences (spinal canal; mediastinum;...)

- Particularly relevant in patients with
- aggressive disease
- high tumor burden and symptomatic patients
 with need rapid tumor shrinkage

PRIMARY PROGRESSIVE DISEASE (PD)

	Nivolumab + Ipilimumab CheckMate-214 n=1096	Pembrolizumab + Axitinib Keynote 426 n=861	Nivolumab + Cabozantinib CheckMate-9ER n=651	Pembrolizumab + Lenvatinib Clear n=1096	Hi
Follow-up, mo	48 (minimum)	42 (median)	18.1 (median)	26.6 (median)	not
Median PFS, mo	12.2	15.7	16.6	23.9	•
PFS HR	0.89	0.68	0.51	0.39	pri
Median OS, mo	NR	45.7	NR	NR	
OS HR	0.69	0.73	0.60	0.66	
ORR, %	39.1	60.4	55.7	71.0	
CR, %	10.7	10.0	8.0	16.1	
PD, %	17.6	11.3	5.6	5.4 100%	7
Median TTR, mo		2.8	2.8	1.9 90%	, -
Median DOR, mo	NR	23.6	20.2	25.8 80%	, -
months; PFS=Progression-free survival; I PD=Progressive disease rate; TTR=Time	HR=Hazard ratio; ORR=Objective response rate: CP=Comp e to response; DOR=Duration of r	lata raspansa	Albiges et al, B Meeting, 2021; C	SMO Virtual Meeting, 2020; Rini choueiri et al, NEJM, 2020; Motze 70%	
		IO = 18%			
		10 - 10/0		60%	
				50%	, -
				40%	, _
			110/		
		1 I = 3 - 1		30%	
				20%	18%
				10%	
				10/0	
				□ 0%	
					Nivo + I

rate of early PD does stematically reflect ry resistance O)...

OVERALL RESPONSE RATE (ORR)

Intention to Tract Donulation								IMDC Risk Group						
			Intention-to-1	reat Population	Favorable				Intermediate/Poor					
	mOS [HR (95% CI)]	mPFS [HR (95% CI)]	ORR (%)	Median DOR (Months)	CR (%)	Median TTR (Months)	mOS [HR (95% CI)]	mPFS [HR (95% Cl)]	ORR (%)	mOS [HR (95% CI)]	mPFS [HR (95% Cl)]	ORR (%)		
Checkmate 214 [#] Ipi/Nivo vs. Sunitinib	56.0 vs. 38.0 [0.72 (0.62–0.85)]	12.0 vs. 12.0 [0.86 (0.73–1.01)]	39.12 vs. 32.3	NR vs. 25.0	10.7 vs. 2.6 *	2.8 vs. 4.0 *	74.0 vs 68 [0. (0.65-	12.4 vs. 28.9	^{30,1}	47.0 vs.	12.0 73 87)]	42.1 vs. 27.2		
KEYNOTE 426 ^{##} Pembro/Axi vs. Sunitinib	45.7 vs. 40.1 [0.73 (0.60–0.88)]	15.7 vs. 11.1 [0.68 (0.58–0.80)]	60.4 vs. 39.6	23.6 vs. 15.3	10.0 vs. 3.5	2.8 vs. 3.0	NR [(0.76–		T		8.2 81)]	56.5 vs. 34.9		
CheckMate 9ER Nivo/Cabo	NR vs. 29.5 [0.66	17.0 vs. 8.3 [0.52	54.8 vs. 28.4	20.2 vs. 11.5	9.3 vs. 4.3	2.8 vs. 4.5	NR vs. NR [0.94	24.7 vs. 12.8 [0.58	66.2 vs.	[0.74 (0.50–1.08)] Poor	8.5 [0.58 (0.45–0.76)]	Int 55.9 vs. 28.7		
vs. Sunitinib	(0.50–0.87)]	(0.43–0.64)]					(0.46–1.92)]	(0.36–0.93)]		NR vs. 11.2 [0.45 (0.27–0.76)]	9.9 vs. 4.2 [0.36 (0.23–0.56)]	Poor 37.7 vs. 10.3		
CLEAR Pembro/ Lenvatinib vs. Sunitinib	NR vs. NR [0.66 (0.49–0.88)]	23.9 vs. 9.2 [0.39 (0.32–0.49)]	71.0 vs. 36.1	25.8 vs. 14.6	16.1 vs. 4.2	1.94 vs. 1.94	NR vs. NR [1.15 (0.55–2.40)]	28.1 vs. 12.9 [0.41 (0.28–0.62)]	68.2 vs. 50.8	NR vs. NR [0.58 (0.42–0.80)]	22.1 vs. 5.9 [0.36 (0.28–0.47)]	72.4 vs. 28.8		
		DOR, duratio median progr 3.5-year follo	n of response; T ression-free surv w-up date.	FR, Time to respon ival; HR, hazard 1	nse; Ipi, Ipilimur ratio; NR, not rea	nab; Nivo, Nivolu ached; mOS, medi	mab; Pembro, Pe an overall survi	embrolizumab; Av val. [#] Extended 5-	ki, Axitinib; Cabo year follow-up o	o, Cabozantinib; C data, * Extended 4	PRR, objective res -year follow-up	ponse rate; mPI date, ^{##} Extende		

SEPARATING SURVIVAL CURVE

3

Contra-indication to corticosteroids (allergy; not-well controlled diabetes)

PATIENTS RECEIVED <u>HIGH- DOSE</u> CORTICOSTEROIDS TO MANAGE ANY-GRADE irAEs

4

Brain metastases (especially with CABOZANTINIB)

EPIDEMIOLOGY / INCIDENCE RCC

- Majority of clinical trials limit (or strictly exclude) patients with BM
- Most data = restrospective- observational designs

STUDY	SOURCE	NO. OF PATIENTS AT RISK	YEARS	HISTOLOGY	TIME OF EVALUATION	INCIDENCE OF BM, %	
Schouten 2002 ¹⁵	MCR	114	1986-1995	NR	NR		
Bianchi 2012 ¹⁶	NIS	11,157	1998-2007	NR	NR	SM A	TDIAGNOSIS
Wyler 2014 ¹⁷	Institutional	246	1967-1995	ccRCC	Autopsy		
Chandrasekar 2017 ¹⁸	SEER	6610	2010-2013	Mixed (42% ccRCC, 48% unknown)	Diagnosis of meta- static disease	9.80	1 50/
Cagney 2017 ¹⁹	SEER	7463	2010-2013	NR	Diagnosis of meta- static disease	10.80	
De Giorgi 2019 ²⁰	EAP	389	2015-2016	Mixed (92% ccRCC)			
Flippot 2019 ¹⁰	Phase 2 trial	729	2016-2017	ccRCC	BM A	ΓDΙ	AGNOSIS OF M+
Suarez-Sarmiento 2019 ²¹	Institutional	473	2011-2014	Mixed (81% ccRCC)			
Sun 2019 ²²	SEER	NR	2010-2013	Mixed (78% ccRCC)	Diagnosis of meta- static disease	12.00	15-30%
Bowman 2019 ²³	Institutional	268	2006-2015	Mixed (94% ccRCC)	Prior to or during 1L therapy	28.4	
Dudani 2021 ²	IMDC	9252	2002-2019	ccRCC	Start of 1L therapy	8.0	
• Use	of rou	tine ba	aselir	ne	Start of 1L therapy	3.0	
brain i	maging	g highl	y var	riable	Has	anov	v et al., 2022

SUNITINIB

	TYPE OF STUDY	TARGETED AGENTS	NO. OF PATIENTS	MEDIAN OS, MO	LOCAL RESPONSE	ΤΟΧΙΟΙΤΥ
Without concomitant local therapy						
Chevreau 2014 ⁹⁶	Phase 2	Sunitinib	16	6.3	ORR: 0%	19% G3-G4 AEs; no neurologic AEs
With or without concomitant local thera	D	- 1 1	1		1	1
Peverelli 2010 ⁹⁷	Penetra	ation th	nrougr	I BBB	limite	G3-G4 AEs; no major neurologic side effects
Hirsch 2		1	Ŭ	1		G3-G4 AEs; no neurologic AEs
	No etti	cacv de	emons	trated		
With local therapy						
Cochran 2012 ⁹⁹	Retrospective	TKI, mTORi, bevacizumab	24 ^a	16.6	Local control rate at 12 mo, 93%	12.5% radiation-induced edema or necrosis
Verma 2013 ⁹²	Retrospective	Sorafenib, sunitinib	40 ^a	6.7	Local control rate at 12 mo, 69%	5% radiation necrosis
Bates 2017 ¹⁰¹	eeding	or Thro	omboti	ic com	nlicati	one III
					picati	J115 •••
		temsirolimus			pication	5115 •••
Johnson 2015 ¹⁰²	Retrospective	temsirolimus TKI, mTORi, bevacizumab	24 ^a	21		NA
Johnson 2015 ¹⁰² Juloori 2019 ⁷⁶	Retrospective	temsirolimus TKI, mTORi, bevacizumab TKI, mTORi, cytokine	24 ^a 376 ^b	21 9.7	NA Incidence of local failure, 15%	NA 12-mo cumulative incidence of radiation necrosis: 8%
Johnson 2015 ¹⁰² Juloori 2019 ⁷⁶	Retrospective Retrospective	temsirolimus TKI, mTORi, bevacizumab TKI, mTORi, cytokine	24 ^a 376 ^b	21 9.7	NA Incidence of local failure, 15%	NA 12-mo cumulative incidence of radiation necrosis 8%

CABOZANTINIB

STUDY	TYPE OF STUDY	TARGETED AGENTS	NO. OF PATIENTS	MEDIAN OS, MO	LOCAL RESPONSE	ΤΟΧΙΟΙΤΥ
Without concomitant local therapy						
Chevreau 2014 ⁹⁶	Phase 2	Sunitinib	16	6.3	ORR: 0%	19% G3-G4 AEs; no neurologic AEs
With or without concomitant local therapy						
Peverelli 2019 ⁹⁷	Retrospective	Cabozantinib	12	8.8	ORR: 50%	36% G3-G4 AEs; no major neurologic side effects
Hirsch 2021 ⁹⁸	Retrospective	Cabozantinib	Cohort 1:33	15	ORR: 55%	17% G3-G4 AEs; no neurologic AEs
			Cohort 2: 55	16	ORR: 47%	
With local therapy]			
Cochran 2012 ⁹⁹	19		24 ^a	16.6	7155	ecrosis
	12pts		103		oo / oop	DLS
Verma 2013 ²²	$\overline{\mathbf{O}}$	~ 00/	40 ^a	6.7	- 	
Seastone 2014 ¹⁰⁰	ORR	= 50%	166 ^b	NA	$\mathbf{J}\mathbf{K}\mathbf{K} =$	55 / 47%
Bates 2017 ¹⁰¹	Retrospective	Sorafenib, suni- tinib, pazopanib, temsirolimus	25 ^a	6.7	Local control rate, 76%	NA
Johnson 2015 ¹⁰²	Retrospective	TKI, mTORi, bevacizumab	24 ^a	21	NA	NA
Juloori 2019 ⁷⁶	Retrospective	TKI, mTORi, cytokine	376 ^b	9.7	Incidence of local failure, 15%	12-mo cumulative incidence of radiation necrosis: 8%
Klausner 2019 ¹⁰³	Retrospective	TKI, mTORi, immunotherapy, chemotherapy	120 ^b	13.5	Local control rate at 12 mo, 92%	14% G3-G4 AEs; 7% radiation necrosis
Abbreviations: AEs, adverse events; G3-G4, grade This cohort was treated with targeted agents. These included all patients treated with or without	3 or 4; mTOR, mammali t targeted therapy.	ian target of rapamycin; m	TORi, mTOR inhibitor; NA	, not applicable; ORR, o	^{bjecti} Hasa	nov et al., 2022

HETEROGENEITY BETWEEN THE SITES OF DISEASE

CABOZANTINIB + NIVOLUMAB

KEYNOTE B61TRIAL

LENVATINIB + PEMBROLIZUMAB

Pembrolizumab plus lenvatinib as first-line therapy for advanced non-clear-cell renal cell carcinoma (KEYNOTE-B61): a single-arm, multicentre, phase 2 trial

Laurence Albiges*, Howard Gurney, Vagif Atduev, Cristina Suarez, Miguel A Climent, David Pook, Piotr Tomczak, Philippe Barthelemy, Jae Lyun Lee, Viktor Stus, Thomas Ferguson, Pawel Wiechno, Erhan Gokmen, Louis Lacombe, Craig Gedye, Rodolfo F Perini, Manish Sharma, Xiang Peng, Chung-Han Lee*

Lancet Oncol 2023; 24: 881–91

Untreated

- Papillary (59%); chromophobe (18%); unclassified (13%)...
- mFU = 14.9 mths
- 1st endpoint = ORR
- ORR = 44%

Patients with glandular (pancreas, adrenal, thyroid,...) metastases

ORIGINAL ARTICLE

Molecular underpinnings of glandular tropism in metastatic clear cell renal cell carcinoma: therapeutic implications

Eduard Roussel^a (b), Lisa Kinget^b (b), Annelies Verbiest^b, Bram Boeckx^{c,d}, Jessica Zucman-Rossi^e (b), Gabrielle Couchy^e, Stefano Caruso^e (b), Marcella Baldewijns^f, Steven Joniau^a, Hendrik Van Poppel^a, Diether Lambrechts^{c,d}, Maarten Albersen^a and Benoit Beuselinck^b

^aDepartment of Urology, University Hospitals Leuven, Leuven, Belgium; ^bDepartment of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium; ^cLaboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; ^dVIB Center for Cancer Biology, VIB, Leuven, Belgium; ^eInserm, UMR-1162, Génomique fonctionnelle des tumeurs solides, Institut Universitaire Hématologie, Paris, France; ^fDepartment of Pathology, University Hospitals Leuven, Leuven, Belgium

ABSTRACT

Background: Glandular metastases (GM) have been associated with improved survival in metastatic clear cell renal cell carcinoma (m-ccRCC). We aimed to molecularly characterize m-ccRCC with GM. Material and methods: We performed a retrospective cohort study on all m-ccRCC patients with available tissue at our institution, diagnosed with metastatic disease from 2000 to 2019. We determined previously described angiogenesis- and immune-related gene expression signatures (GES) and ccrcc molecular subtypes through whole transcriptome RNA sequencing of primary tumors and metastases. We tested differences in GES and molecular subtypes across groups and studied overall (OS) and progression-free survival (PFS) using Kaplan–Meier survival analysis and Cox regression models. **Results:** Primary tumors of patients who developed GM (n = 55) had higher IMmotion Angio (p < 0.001) and JAVELIN Angio (p = 0.003) GES as well as a higher proportion of angiogenic ccrcc2 molecular subtypes (p = 0.008) than primary tumors of patients with non-GM (n = 128). Metastatic lesions in glandular organs (n = 32) also had higher IMmotion Angio (p = 0.008) and JAVELIN Angio (p = 0.02) GES and were more frequently of the ccrcc2 molecular subtype (p = 0.03), compared to metastatic lesions in non-glandular organs in patients who did not develop any GM (n = 231), but not compared to metastatic lesions in non-glandular organs in patients who also developed GM (n = 18). Patients with GM had better OS (HR 0.49, p < 0.001) and PFS on first-line vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) (HR 0.64, p = 0.045) than patients with non-GM. PFS on first- or any-line immuno-oncology (IO) was not different. IMmotion Angio, JAVELIN Angio GES, and ccrcc2 molecular subtype were associated with better OS and PFS on first-line VEGFR-TKIs, but not PFS on first or any-line IO.

Conclusions: Patients with m-ccRCC who develop GM are molecularly characterized by heightened angiogenesis, translating into better prognosis and better outcomes on VEGFR-TKIs, but not IO. Based on these findings, VEGFR-TKIs should be included in the first-line treatment of m-ccRCC patients with GM.

ARTICLE HISTORY

Received 3 June 2021 Accepted 27 July 2021

KEYWORDS

Glandular metastasis; gene expression; angiogenesis; immunotherapy; molecular subtypes

Retrospective

- 2000-2019
- Angiogenesis- and immune-signatures
 - <u>PRIMARY</u>
 GM = 55
 Non-GM = 128
 <u>METASTATIC</u>
 GM = 32
 - Non-GM = 231

Check for updates

KM SURVIVAL CURVES STRATIFIED FOR PRESENCE OF GLANDULAR METASTASES

Metastatic renal cell carcinoma to the pancreas and other sites —a multicenter retrospective study

Cassandra Duarte,^a Junxiao Hu,^a Benoit Beuselinck,^b Justine Panian,^c Nicole Weise,^c Nazli Dizman,^d Katharine A. Collier,^e Nityam Rathi,^f Haoran Li,^f Roy Elias,^g Nieves Martinez-Chanza,^h Tracy L. Rose,ⁱ Lauren C. Harshman,^{j,p} Dharmesh Gopalakrishnan,^k Ulka Vaishampayan,^{l,q} Yousef Zakharia,^m Vivek Narayan,ⁿ Benedito A. Carneiro,^o Anthony Mega,^o Nirmish Singla,^{g,r} Cheryl Meguid,^a Saby George,^k James Brugarolas,^g Neeraj Agarwal,^f Amir Mortazavi,^e Sumanta Pal,^d Rana R. McKay,^c and Elaine T. Lam^{a,*} Cohort 1 (91pts) = oligoM+ to pancreas

 Cohort 2 (229pts) = multipleM+ including

pancreas

Population	Median OS (months) 95% Cl	
Total Cohort 1 population	121 (93, NR)	
Surgery	100 (93, NR)	
Systemic therapy	NR (56, NR)	
Total Cohort 2 population	90.77 (74.9, 114)	
Cohort A—VEGFR	90.77 (66, 114)	
Cohort B—IO	92 (78, NR)	
HD-IL2 Therapy	89 (78, NR)	
ICI Therapy	NR (NR, NR)	
Cohort C—VEGFR/IO	74.9 (33, NR)	

Outcome	VEGFR subgroup	Immunotherapy subgroup	Combination VEGFR/I0 subgroup
Best radiographic response CR	2 (1.6)	5 (13.9)	0 (0.0)
Frequency (N (%))	58 (45.0)	8 (22.2)	8 (50.0)
SD	60 (46.5)	15 (41.7)	8 (50.0)
PD	9 (7.0)	8 (22.2)	0 (0.0)
Median time on treatment (months, IQR)	11.6 (4.0, 28.1)	6.5 (3.0, 10.0)	15.0 (5.7, 21.3)

- Heightened angiogenesis
- Better outcomes (higher mOS)
- Higher PR with VEGR

+/- 50mths in all comers

2023;60: 102018

WHAT IS THE BEST CANDIDATE FOR BONE METASTASES ???

BONE METASTASES <u>INCIDENCE</u> IN RCC FIRST-LINE STUDIES

Trial	% of patients with BM	HR (95%CI) vs. sunitinib (PFS)	HR (95%CI) vs. sunitinib (OS)
Checkmate-214 ^[9]	20.0%	NR	0.71 (0.47-1.08)
Javelin Renal 101 ^[10]	NR	NR	NR
KEYNOTE-426 ^[11]	23.8% 20-24%	NR	NR
CHECKMATE-9ER ^[12]	24.1%	0.34 (0.22-0.55)	0.54 (0.32-0.92)
CLEAR ^[13]	23.9%	NR	NR

BONE METASTASES OUTCOMES

Mansinho et al., 2021

CABOZANTINIB

 * These authors share first authorship and are listed in alphabetical order

- Inhibits osteoclast differentiation and bone resorption activity
- Down-modulates expression of osteoclast marker genes, TRAP-CATHEPSIN-RANK
- Increases osteoprotegerin
- Inhibits osteoclast functions « directly » and « indirectly » reducing RANKL/osteoprotegerin ratio in osteoblasts
- Increased osteoblast

OSTEONECROSIS OF THE JAW (ONJ)

Support Care Cancer (2018) 26:869-878 DOI 10.1007/s00520-017-3903-5 ORIGINAL ARTICLE Incidence of medication-related osteonecrosis of the jaw in patients treated with both bone resorption inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors T. van Cann ¹ · T. Loyson ¹ · A. Verbiest ¹ · P. M. Clement ¹ · O. Bechter ¹ · L. Willems ² · L. Spriet ² · R. Coropciuc ³ · C. Politis ³ · R. O. Vandeweyer ¹ · J. Schoenaers ³ · P. R. Debruyne ⁴ · H. Dumer ¹ · P. Berteloot ⁵ · P. Neven ⁵ · K. Nackaerts ⁶ · F. J. S. H. Woei- A-Jin ^{1,7} · K. Punie ¹ · H. Wildiers ¹ · B. Beuselinck ¹ ④	Time-to-MF 100 90 80 70 60 50 40 30 20 HR 10 (95 0 6 9 0 6 9 0 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0	IRONJ (%) Bone resorption inhibitors (n=533) Bone resorption inhibitors + VEGFR-TKIs (n= <0.0001 R 9.5 55%CI 3.1-29.6) a 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150	•	90 pts Incidence = 11.1% During the 1st year of BRI- exposure, 1.1 % vs 6.7% (n 0.0075; OP 5.9)
Denosumab Toxicity When Combin Anti-angiogenic Therapies on Paties Metastatic Renal Cell Carcino A GETUG Study Aline Guillot, ¹ Charlotte Joly, ² Philippe Barthélémy, ³ Eme Sylvie Negrier, ⁵ Damien Pouessel, ⁶ Christing Chevreau, ⁷ Hak	ned With nts With ma: cline Meriaux, ⁴	Time (months)	•	(p=0.0035; OR= 5.9) Time to-ONJ incidence shorter in pts with AA+BRI (4.5 vs 25mths)
 Sophie Regret, Damber Pouessi, Combination Concernation, Internet and State Concernation, Internet and Internet and Internet State Concernation, Internet and Internet Concernation, Internet Conce	No phile Tartas, ¹² n Tinquaut, ¹⁴ Carim Fizazi ¹³ nly osteonecrosis of the nti-angiogenic combina- jaw. This toxicity signal al cell carcinoma. The toxicity signal al cell carcinoma. The toxicity relies on anti- Es) can be prevented with	 41 pts ONJ = 17% All pts with ONJ received 	red	
zoledronic acid in solid tumors. However, there is limited available data on Dmab toxicit therapies in patients with kidney cancer. The objective of this study was to retrospectively i (mainly osteonecrosis of the jaw [ONJ] and hypocalcemia) in patients with metastatic ren treated with Dmab and AA therapy combination. Patients and Methods: We conducted a study among centers from the French Groupe d'Etudes des Tumeurs Uro Genitales (GE metastases who received concurrently or sequentially AA therapy and Dmab were included total of 41 patients with mRCC were enrolled. Although no patient presented with severe hyp in 7 (17%) of 41 patients. Interestingly, all patients with ONJ received the Dmab and AA con treatment; among these patients, 3 patients had no risk factor other than the Dmab and AA of The incidence of ONJ was high in this real-life population of patients with mRCC treated wi with Dmab. This toxicity signal should warn physicians about this combination in the mRC	y in combination with AA analyze the toxicity profile al cell carcinoma (mRCC) in multicenter retrospective TUG). Patients with bone d in this study. Results: A socalcernia, ONJ occurred nbination in the first line of combination. Conclusion: th AA therapies combined 2C population.	DENO + AA		

Clinical Genitourinary Cancer, Vol. 17, No. 1, e38-43 © 2018 Elsevier Inc. All rights reserved. Keywords: Anti-angiogenic therapies, Bone metastasis, Desosumab, Metastatic renal cell carcinoma, Osteonecrosis of the jaw

WHAT IS THE BEST CANDIDATE FOR FAVORABLE IMDC RISK GROUP ???

REIMBURSEMENT CRITERIA

NIVO + CABO

VERY FAVORABLE RISK GROUP

ASCO GU 2021- abstract 339

Correlation to underlying biology !!!

		0	verall	Surviv	val		
Probability	1.0 0.8- 0.6- 0.4- 0.2-					/ /	Very Favorable Favorable Intermediate
	0.0-	1	1	1	1	1	
	0	12	24	36	48	60	72
		Mor	ths from s	start of sys	temic ther	ару	
Very favorable Favorable Intermediate Poor	454 1091 5117 2482	394 876 3418 796	317 624 2096 373	226 414 1282 189	163 251 813 108	117 152 501 63	71 90 311 41

	Very Favorable (n=454)	Favorable (n=1091)	Hazard ratio (95% CI) p-value
Median OS, months (95% CI)	64.8 (58.8 - 70.8)	45.6 (42.0 - 50.4)	1.84 (1.56 - 2.20) <0.001
Median time to treatment failure, months (95% CI)	16.3 (14.8 - 18.2)	12.0 (11.2 - 12.9)	1.31 (1.16 - 1.48) <0.001

THE OPTIMAL TREATMENT OF IMDC GOOD-FAVORABLE RISK RCC PATIENTS ?

BENEFITS OF INTENSIFICATION WITH « TRIPLET » ???

CHECKMATE 9ER- TRIPLET ARM

mFU = 39.1 mths

- Exploratory analysis of pts randomised to the triplet arm (IPI+NIVO+CABO) before enrolment discontinuation
 - ORR = 44%; CR = 8%
 - **mPFS** = 13.9 mths
 - mOS = 37 mths
 - Grade 3-4 TRAEs = 84% !!!
 - ASAT, ALAT, hepatotoxicity
 - 46% of treatment discontinuation of at least one study drug due to AEs

Available online at www.sciencedirect.com

EJC

Andrea B. Apolo^{a,*}, Thomas Powles^b, Bernard Escudier^c, Mauricio Burotto^d, Joshua Zhang^e, Burcin Simsek^f, Christian Scheffold^g, Robert J. Motzer^{h,1}, Toni K. Choueiri^{i,1}

European Journal of Cancer 177 (2022) 63-71

COSMIC-313 TRIAL

T.K. Choueiri, T. Powles, L. Albiges, M. Burotto, C. Szczylik, B. Zurawski, E. Yanez Ruiz, M. Maruzzo, A. Suarez Zaizar, L.E. Fein, F.A. Schutz, D.Y.C. Heng, F. Wang, F. Mataveli, Y.-L. Chang, M. van Kooten Losio, C. Suarez, and R.J. Motzer, for the COSMIC-313 Investigators*

PHASE III

855 pts

mFU = 20 mths

ADVERSE EVENTS (SAFETY POPULATION)

	Cabo+Nivo+Ipi (N=426)		Pbo+Nivo+lpi (N=424)		
	Any Grade	Grade 3–4	Any Grade	Grade 3–4	
Treatment-related adverse events					
Any event,* %	99	73	91	41	
Alanine aminotransferase increased	46	26	17	6	
Aspartate aminotransferase increased	44	20	16	5	
Diarrhea	41	4	18	3	
Palmar-plantar erythrodysesthesia	28	3	4	0	
Hypothyroidism	24	<1	15	0	
Hypertension	23	8	5	2	
Fatigue	22	2	21	1	
Lipase increased	22	9	13	6	
Amylase increased	20	5	12	2	
Rash	20	2	20	1	
Pruritus	20	0	26	<1	

	Cabo+Nivo+Ipi (N=426)	Pbo+Nivo+Ipi (N=424)
Median duration of exposure of study treatment (range), mo	10.9 (0.2–28.5)	10.3 (0.1–28.1)
Median average daily dose (range) of Cabo or Pbo, mg	23.2 (3.6–40.0)	36.1 (0.8–40.0)
Median Nivo infusions (range) received, no	10 (1–27)	9 (1–27)
Doses of Ipi received, %		
4	58	73
3	13	14
2	22	7
1	7	6
Any dose hold due to an AE, %	90	70
Any dose reduction of Cabo or Pbo due to an AE, %	54	20
Treatment-related AE leading to discontinuation, %		
Any study treatment	45	24
Cabo or Pbo	28	14
Nivo	26	18
lpi	30	12
All treatment components (due to the same AE)	12	5

TRAEs leading to discontinuation (any treatment) = 45% vs 24%

Use of High-dose corticosteroids = 58% / 35%

35% (95% Cl, 28.6–42.0) for Pbo+Nivo+Ipi

38% (95% Cl, 26.2–50.7) for Pbo+Nivo+Ipi

LITESPARK-012 TRIAL

PHASE III

INTERNATIONAL GUIDELINES (EAU)

	Standard of Care	Alternative in patients who can not receive or tolerate immune checkpoint inhibitors
IMDC favourable risk	nivolumab/cabozantinib [1b] pembrolizumab/axitinib [1b] pembrolizumab/lenvatinib [1b]	sunitinib* [1b] pazopanib* [1b]
IMDC intermediate and poor risk	nivolumab/cabozantinib [1b] pembrolizumab/axitinib [1b] pembrolizumab/lenvatinib [1b] nivolumab/ipilimumab [1b]	cabozantinib* [2a] sunitinib*[1b] pazopanib* [1b]

PATIENTS FOR MONOTHERAPY ?

- significant comorbidities = immunosuppressed
 transplant recipients; severe autoimmune diseases
- unable to tolerate the added toxicity associated with combinaison (elderly and unfit)
- Clearly defined angiogenic profile (but need of biomarkers)
- Very favorable risk group ? (but also need of biomarkers)

OMNIVORE TRIAL

H

Optimized Management of Nivolumab and Ipilimumab in Advanced Renal Cell Carcinoma: A Response-Based Phase II Study (OMNIVORE) Rana R. McKay, MD¹; Bradley A. McGregor, MD²; Wanling Xie, MS²; David A. Braun, MD, PhD²; Xiao Wei, MD²;

Rana R. McKay, MD¹; Bradley A. McGregor, MD²; Wanling Xie, MS²; David A. Braun, MD, PhD²; Xiao Wei, MD²; Christos E. Kyriakopoulos, MD³; Yousef Zakharia, MD⁴; Benjamin L. Maughan, MD, PharmD⁵; Tracy L. Rose, MD⁶; Walter M. Stadler, MD⁷; David F. McDermott, MD⁸; Lauren C. Harshman, MD²; and Toni K. Choueiri, MD²

mFU = 19.5 mths

1st endpoint = ORR

83 / 42 pts (L1)

PHASE II

HCRN GU16-260 TRIAL

PHASE II 123 pts L1

TITAN TRIALPHASE II207 / 108 pts (L1)mFU = 36.2 wks

PEDIGREE TRIAL

CONCLUSIONS

SPECTACULAR IMPROVEMENTS IN OS !!!

3

Cardiac contra-indication

- Without rapid progression
- When the primary goal is **CURE**
- **Only chance to use IPILIMUMAB**

WHAT IS THE BEST CANDIDATE FOR IO+TKI ???

Particularly relevant in anatomical sites where tumor growth may lead to adverse consequences (spinal canal; mediastinum;...)

- Particularly relevant in patients with
- aggressive disease
- high tumor burden and symptomatic patients
- with need rapid tumor shrinkage

Contra-indication to corticosteroids (allergy; not-well controlled diabetes)

Patients with glandular (pancreas, adrenal, thyroid,...) metastases

WHAT IS THE BEST CANDIDATE FOR BONE METASTASES ???

INCIDENCE

OUTCOMES

ONJ : DENO + TKI

BENEFITS OF INTENSIFICATION WITH « TRIPLET » ???

CHECKMATE 9ER TRIAL

NOT a SoC !!!

COSMIC TRIAL

- 1st endpoint met : PFS = HR 0.73
- Intermediate : PFS = HR 0.63
- Poor : PFS = NS \rightarrow ???
- ORR = 42% vs 36% → not so impressive (excess of toxicity? No adequate exposure ?)
- OS = not yet mature

WHAT IS THE BEST CANDIDATE FOR FAVORABLE IMDC RISK GROUP ???

OS / 4 PHASE III RCTs

BELGIUM REIMBURSMENT

$$HR = NS$$

STILL PLACE FOR TKI MONOTHERAPY ???

BIOMARKERS !!!

- significant comorbidities = immunosuppressed transplant recipients; severe autoimmune diseases
 unable to tolerate the added toxicity associated with
 - combinaison (elderly and unfit)

- Clearly defined angiogenic profile
- Very favorable risk group ?

OMNIVORE TRIAL

HCRN GU16-260 TRIAL

TITAN TRIAL

Very low PR (4-12%) Very rare CR (0-2.7%) After « boost » by IPILUMIMAB

NOT a SoC !!!

TREATMENT SELECTION = complex and involves factors beyond IMDC score

DISEASE FACTORS

IMDC score

Tumor/symptom burden Metastases`speed of response needed

PATIENT FACTORS

Age and lifestyle Performance status Comorbidities Concomitant medications Treatment preferences

TREATMENT FACTORS

Treatment access

Receipt of prior therapy Efficacy/ safety/ HRQoL data

There are currently No biomarkers

BIONIKK TRIAL

202 pts

mFU= 18 mths

PHASE II

PIPELINE FOR RCC

Drug	Company	Mechanism of action	Highest phase
MK-1308A	Merck & Co.	PD1 and CTLA4 inhibitor	Phase III
Toripalimab (Tuoyi)	Shanghai Junshi Biosciences	PD1 inhibitor	Phase III
Durvalumab (Imfinzi)	AstraZeneca	PDL1 inhibitor	Phase III
Tremelimumab (Imjudo)	AstraZeneca	CTLA4 inhibitor	Phase III
Savolitinib (Orpathys)	AstraZeneca	MET inhibitor	Phase III
Zanzalintinib	Exelixis	Multitarget TKI	Phase III
Abexinostat	Xynomic Pharmaceuticals	HDAC inhibitor	Phase III
Batiraxcept	Aravive	GAS6-AXL pathway inhibitor	Phase II
NKT2152	NiKang Therapeutics	HIF2α inhibitor	Phase II
DFF332	Novartis	HIF2α inhibitor	Phase I
AB521	Arcus Biosciences	HIF2α inhibitor	Phase I
ALLO-316	Allogene Therapeutics	Anti-CD70 allogeneic CAR-T cell therapy	Phase I
CTX-131	CRISPR Therapeutics	Anti-CD70 allogeneic CAR-T cell therapy	Phase I
Ciforadenant	Corvus Pharmaceuticals	Adenosine A2A receptor antagonist	Phase II
XmAb819	Xencor	ENPP3 × CD3 bispecific antibody	Phase I

CAR, chimeric antigen receptor; CD, cluster of differentiation; CTLA4, cytotoxic T-lymphocyte associated protein 4; ENPP3, ectonucleotide pyrophosphatase/phosphodiesterase family member 3; GAS6, growth arrest-specific protein 6; HDAC, histone deacetylase; HIF2α, hypoxia-inducible factor 2α; MET, mesenchymal-epithelial transition factor; PD1, programmed cell death protein 1; PDL1, programmed death ligand 1; TKI, tyrosine kinase inhibitor.

Tur et al., Nature Reviews drug discovery 2024

RCC DRUG MARKET

MAJOR-MARKET SALES

Tur et al., Nature Reviews drug discovery 2024

11th Belgian Multidisciplinary Meeting on Urological Cancers

