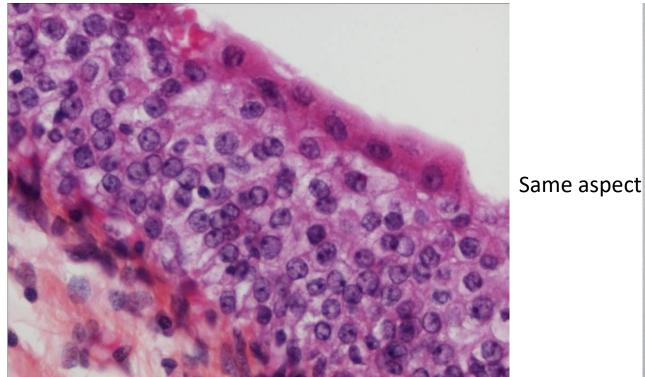
Genomic and tumour characterisation of UTUC

Pr Eva Compérat Dpt Pathology Vienna/Paris


Conflicts of interest

Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports	
Receipt of honoraria or consultation fees	Jansen, BMS
Stock shareholder	
Other support (please specify):	

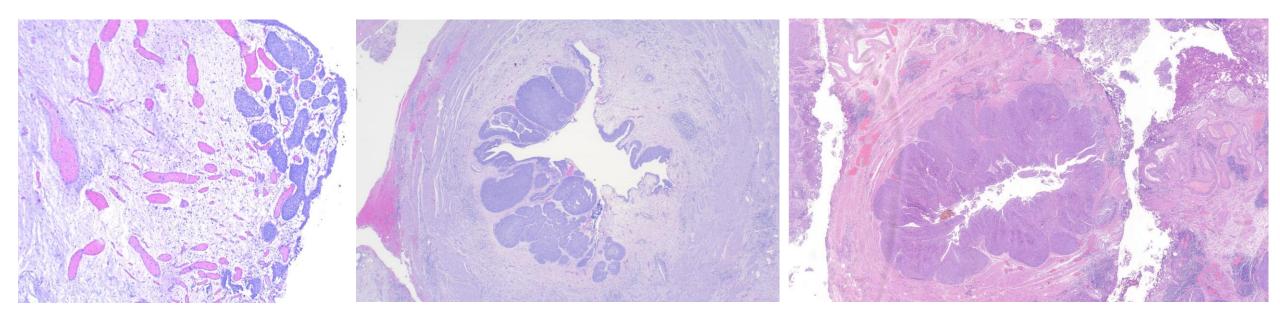
From a histological point of view


- Globally same classification
- Same subtypes
- Staging +/- same

Same aspect

From a histological point of view

- Globally same classification
- Same subtypes
- Staging +/- same



Histopathology

- Frequent
 - Squamous differentaition
 - Inverted lesions
 - Invasiveness tricky+++

Histopathology

- Frequent
 - Squamous differentaition
 - Inverted lesions
 - Invasiveness tricky+++


Prognostic factors and predictive tools for upper tract urothelial carcinoma: a systematic review

Aurélie Mbeutcha^{1,2} · Morgan Rouprêt³ · Ashish M. Kamat⁴ · Pierre I. Karakiewicz⁵ · Nathan Lawrentschuk⁶ · Giacomo Novara⁷ · Jay D. Raman⁸ · Christian Seitz¹ · Evanguelos Xylinas⁹ · Shahrokh F. Shariat^{1,10,11}

Results A total of 116 studies were included in this review. These large and/or multi-institutional studies have confirmed the prognostic value of standard pathological factors (i.e., tumor stage, grade and lymph node metastasis) and identified novel features such as <u>lymphoyascular</u> invasion, tumor architecture, multifocality, concomitant CIS, variant histology and biomarker status among others. Based on these variables, several predictive tools have been developed; however, they often lack of validation. The value of these features and tools needs prospective testing.

Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma

Tyler J. Moss^a, Yuan Qi^a, Liu Xi^b, Bo Peng^a, Tae-Beom Kim^a, Nader E. Ezzedine^d, Maribel E. Mosqueda^d, Charles C. Guo^e, Bogdan A. Czerniak^e, Michael Ittmann^f, David A. Wheeler^c, Seth P. Lerner^{g,*}, Surena F. Matin^{h,**}

BLADDR 2022

Genetics

- RNA-clusters
- Comparison with TCGA
- Clusters \rightarrow basal-like
- Clusters close to luminal
- Each sub-type
 - Molecular specificity
 - 4 different clusters

Cluster 2

- 100% FGFR3 mutations
- LG
- Tobaccho
- Non-invasive
- No recurrence

Cluster 3

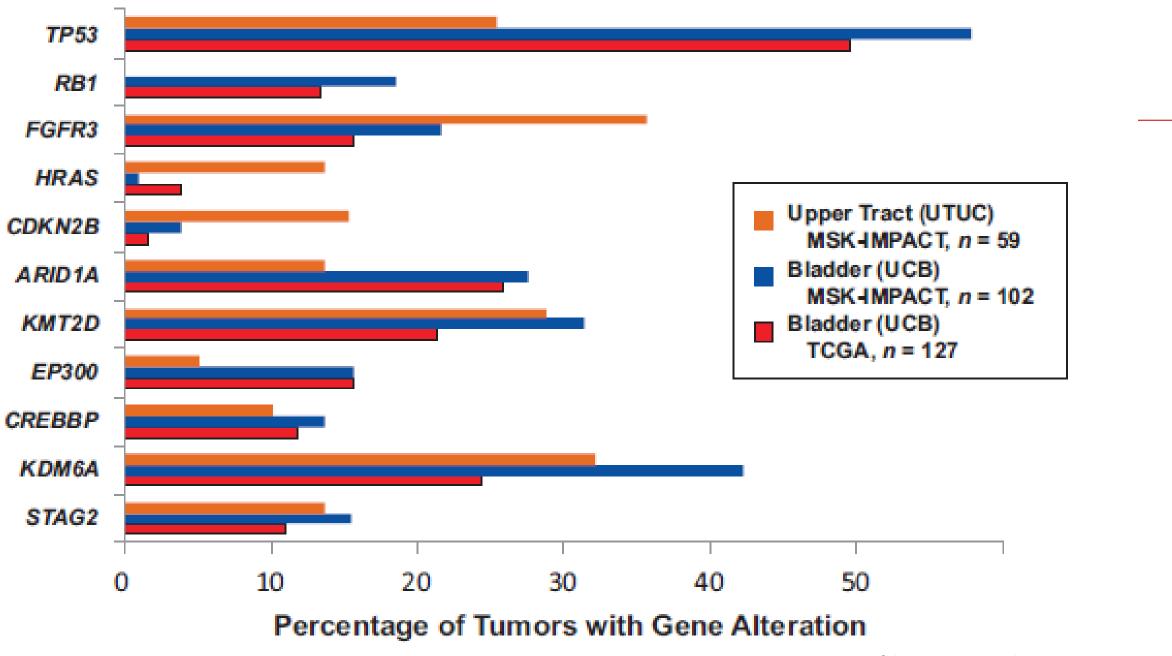
100% FGFR3 mut, 71% PIK3CA mut, no TP53 mut Tobaccho All tumors <pT2 Recurrence

Cluster 1

NO PIK3CA mutations Non-smoker HG <pT2 High recurrence

Cluster 4

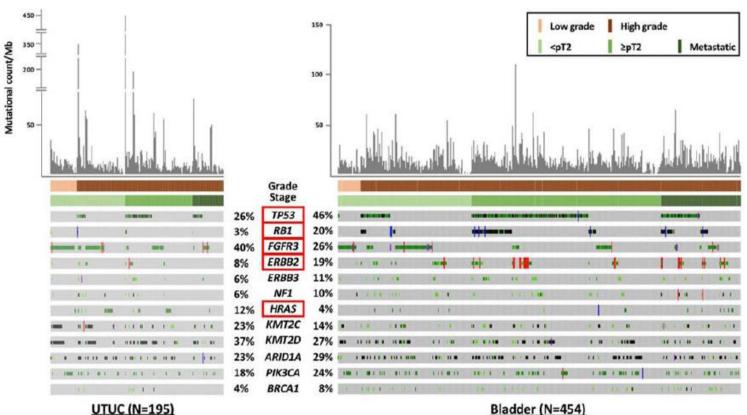
50% FGFR3 mut, 50% TP53 mut, no PIK3CA mut HG \ge pT2, Cis Tobaccho Short survival BLADDR 2022

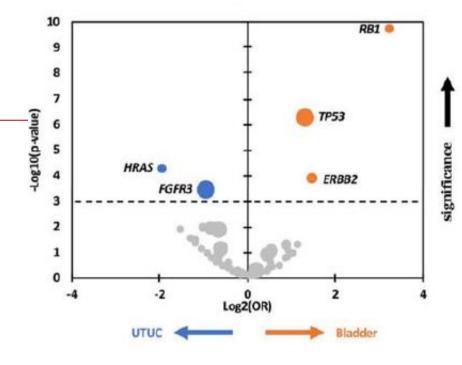

Comparison UTUC and UBCa

HG UTUC and UBCa

- Significant differences in prevalence of somatic alterations
- HG UTUC vs UBCa
 - FGFR3 (36 vs 21%)
 - HRAS (14 vs 1%)
 - CDKN2B (15 vs 4%)
 - Less mutated
 - TP53 (25-58%)
 - RB1 (0-18%)
 - ARIDA1A (13-27%)
- UTUC many targetable alterations

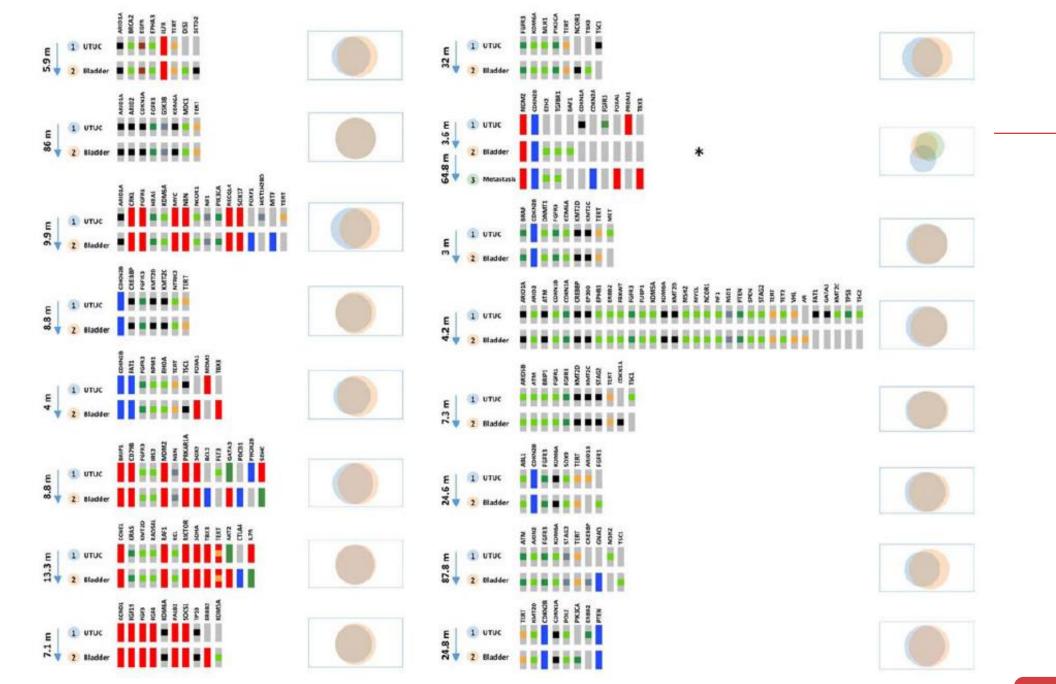
FGFR3 (54%)									
, ,			·====>)) =	 	•				
KMT2D (35%)									
KDM6A (34%)	•••			 1					
KMT2C (24%)									
STAG2 (22%)								•	
CDKN2A (21%)									
TP53 (18%)									
CDKN2B (16%)	111								
CREBBP (16%)							•		
TSC1 (16%)							•		
PIK3CA (15%)									
ARID1A (12%)		•		 1					
CCND1 (11%)									
HRAS (10%)						•			

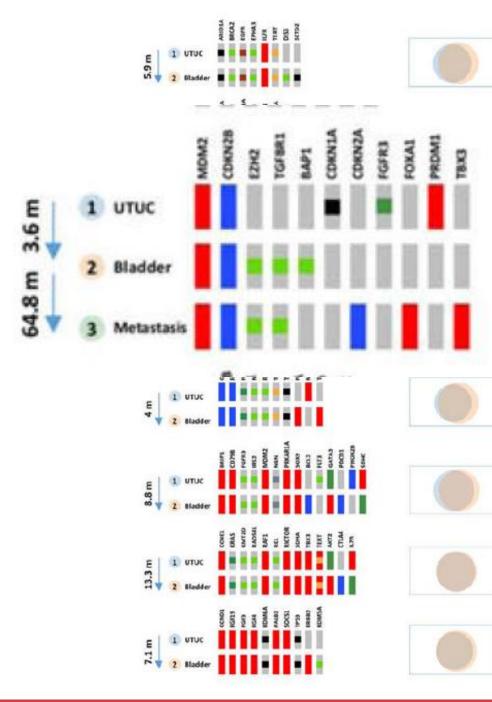

Slakianos Eur Uroi 2016

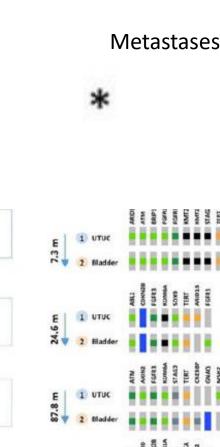


Sfakianios, Eur Urol 2015

Clonal relatedness and mutational differences between upper tract and bladder urothelial carcinoma

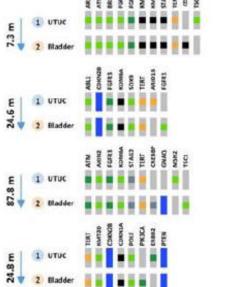

François AUDENET^{#1}, Sumit ISHARWAL^{#1}, Eugene K. CHA¹, Mark T. A. DONOGHUE^{2,3}, Esther N. DRILL², Irina OSTROVNAYA², Eugene J. PIETZAK¹, John P. SFAKIANOS⁴, Aditya BAGRODIA⁵, Paari MURUGAN⁶, Guido DALBAGNI¹, Timothy F. DONAHUE¹, Jonathan E. ROSENBERG⁷, Dean F. BAJORIN⁷, Maria E. ARCILA^{3,8}, Jaclyn F. HECHTMAN⁸, Michael F. BERGER^{3,8}, Barry S. TAYLOR^{2,3}, Hikmat AL-AHMADIE^{3,8}, Gopa IYER^{3,7,9}, Bernard H. BOCHNER^{1,9}, Jonathan A, COLEMAN^{1,*}, and David B, SOLIT^{3,7,9,*}





Risk of bladder recurrence if FGFR3, KDM6A, CCND1, TP53 mutations If both tumors clonally related

UTUC (N=195)

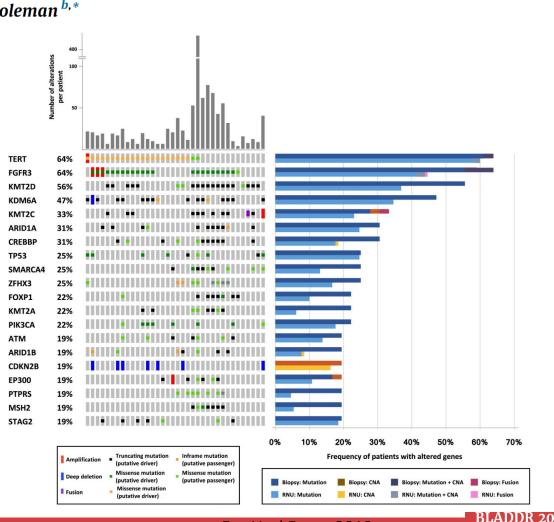


E C 2 Bladder

Metastases closer to UC than UTUC

.....

a 2



Genomic Profile of Urothelial Carcinoma of the Upper Tract from Ureteroscopic Biopsy: Feasibility and Validation Using Matched Radical Nephroureterectomy Specimens

Aditya Bagrodia^{*a*,†}, Francois Audenet^{*b*,†}, Eugene J. Pietzak^{*b*}, Kwanghee Kim^{*b*}, Katie S. Murray^{*b*}, Eugene K. Cha^{*b*}, John P. Sfakianos^{*c*}, Gopa Iyer^{*d*}, Nirmish Singla^{*a*}, Maria Arcila^{*e*}, Bernard H. Bochner^{*b*}, Hikmat A. Al-Ahmadie^{*e*}, David B. Solit^{*d*}, Jonathan A. Coleman^{*b*,*}

- 92% of biopsies material sufficient
- *TERT* promoter 64%
- FGFR3 64%
- Molecular characterization biopsies
 - Guide treatment
 - Helps in decision making
 - Identify high risk patients
 - NAC
 - Organ-sparing

Eur Urol Focus 2019

Lynch syndrome (LS)

- Autosomal dominant
- Germcell mutations of DNA MMR genes
- Amsterdam 1&2 criteria, Bethesda guidelines
- UTUC treatment varies whether sproadic or LS
 - Rare \rightarrow 2 new cases /100000
- Link with pathologist & genetic oncologist++ (IHC, RT-PCR)

Upper Urinary Tract Urothelial Carcinoma in Lynch Syndrome Patients: The Urologist Still Has a Role in Genetic Screening

Elisabeth Grobet-Jeandin^{*a,b*}, Ugo Pinar^{*a*}, Morgan Rouprêt^{*a*,^{*}}

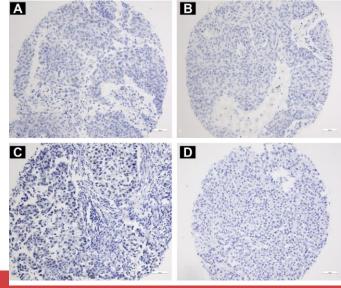
Immunohistochemical Screening of Upper Tract Urothelial Carcinomas for Lynch Syndrome Diagnostics: A Systematic Review

Maria Rasmussen, Mia Gebauer Madsen, and Christina Therkildsen

- Universal staining for MMR loss
- LS in 4.7%
- Ureter more often
- Mostly loss of hMSH2 and hMSH6
 - Heterogeneity of hMSH6 expression
 - Testing less efficient than in colorectal cancers?
 - All immediately RT-PCR?
- MSI-High instability of 2 ore more marker

Immunohistochemical Screening of Upper Tract Urothelial Carcinomas for Lynch Syndrome Diagnostics: A Systematic Review

Maria Rasmussen, Mia Gebauer Madsen, and Christina Therkildsen

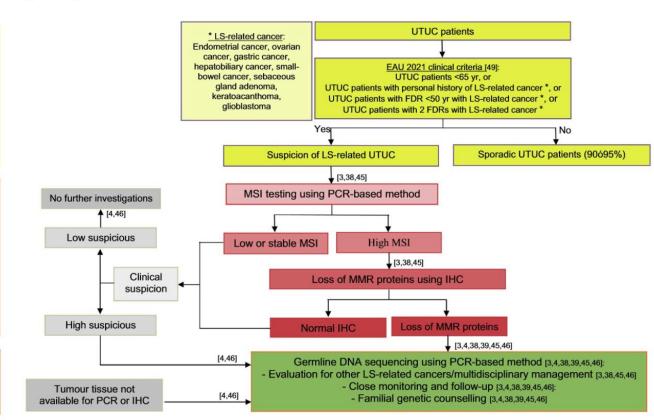

- Universal staining for MMR loss
- LS in 4.7%
- Ureter more often

Loss of Mismatch-repair Protein Expression and Microsatellite Instability in Upper Tract Urothelial Carcinoma and Clinicopathologic Implications

Björn Schneider,¹ Änne Glass,² Sandra Jagdmann,³ Maja Hühns,¹ Jessica Claus,¹ Heike Zettl,⁴ Desiree-Louise Dräger,⁵ Matthias Maruschke,^{5,6} Oliver W. Hakenberg,^{5,6} Andreas Erbersdobler,¹ Annette Zimpfer¹

chemotherapy. **Conclusion:** The frequency of MSI in UTUC was 36 (28.1%) of 128 patients with a good accuracy of immunohistochemistry. In daily practice, MSI screening especially is recommended in patients with advanced UTUC

- Mostly loss of hMSH2 and hMSH6
 - Heterogeneity of hMSH6 expression
 - Testing less efficient than in colorectal cancers?
 - All immediately RT-PCR?
- MSI-High instability of 2 ore more marker


Upper Tract Urothelial Carcinoma in the Lynch Syndrome Tumour Spectrum: A Comprehensive Overview from the European Association of Urology - Young Academic Urologists and the Global Society of Rare Genitourinary Tumors

Chiara Lonati^{*a,b,**}, Andrea Necchi^{*c,d*}, Juan Gómez Rivas^{*e*}, Luca Afferi^{*b*}, Ekaterina Laukhtina^{*f,g*}, Alberto Martini^{*h*}, Eugenio Ventimiglia^{*h*}, Renzo Colombo^{*h*}, Giorgio Gandaglia^{*h*}, Andrea Salonia^{*c,h*}, Alberto Briganti^{*c,h*}, Francesco Montorsi^{*c,h*}, Agostino Mattei^{*b*}, Claudio Simeone^{*a*}, Maria I. Carlo^{*i*}, Shahrokh F. Shariat^{*f,g,j,k,l*}, Philippe E. Spiess^{*m*}, Marco Moschini^{*b,h*}, on behalf on the European Association of Urology Young Academic Urologists EAU-YAU: Urothelial Carcinoma Working Group, the Clobel Society of Deep Contentioners Tensor CCDCT

• UTUC 3rd most common

Lynch syndrome (LS) related tumor

- 14x risk of UTUC
- 75x if hMSH2
- Younger (p=0.005) F>M
- Ureteral location (p=0.01)
- No consensus on screeing protocols
- Urinary cytology not recommended
 - Sensitivity 29%

Current Advances in Immune Checkpoint Inhibition and Clinical Genomics in Upper Tract Urothelial Carcinoma: State of the Art

Gianluigi Califano ^{1,2}, Idir Ouzaid ², Paul Laine-Caroff ², Arthur Peyrottes ², Claudia Collà Rux Benjamin Pradère ³, Vincent Elalouf ⁴, Vincent Misrai ⁵, Jean-François Hermieu ², Shahrokh F. ⁵ and Evanguelos Xylinas ^{2,6,*} primary tumor location. Actually, sporadic UTUC has a luminal–papillary T-cell-depleted contexture and activated FGFR3 signaling. In addition, upregulation of FGFR3 in UTUC seems to be associated with a lower CD8 T-cell gene signature and, more interestingly, it has been shown to be important in shaping the observed T-cell-depleted phenotype [38]. Consequently, sporadic UTUC should frequently be characterized by an immune desert profile and refractoriness to immunotherapy. In contrast, UTUC developed in a Lynch syndrome context exhibits high MSI and TMB. According to these biological features, it could be considered an immune hot tumor. However, the profiles depicted did not match the clinical outcomes reported in the leading studies investigating the efficacy of immunotherapy in UTUC [7]. Again, this is indirect evidence that a significant knowledge

Current Advances in Immune Checkpoint Inhibition and Clinical Genomics in Upper Tract Urothelial Carcinoma: State of the Art

Gianluigi Califano ^{1,2}, Idir Ouzaid ², Paul Laine-Caroff ², Arthur Peyrottes ², Claudia Collà Rux Benjamin Pradère ³, Vincent Elalouf ⁴, Vincent Misrai ⁵, Jean-François Hermieu ², Shahrokh F. ⁵ and Evanguelos Xylinas ^{2,6,*}

Open Access Full Text Article

An Update on Immune Checkpoint Therapy for the Treatment of Lynch Syndrome

primary tumor location. Actually, sporadic UTUC has a luminal–papillary T-cell-depleted contexture and activated FGFR3 signaling. In addition, upregulation of FGFR3 in UTUC seems to be associated with a lower CD8 T-cell gene signature and, more interestingly, it has been shown to be important in shaping the observed T-cell-depleted phenotype [38]. Consequently, sporadic UTUC should frequently be characterized by an immune desert profile and refractoriness to immunotherapy. In contrast, UTUC developed in a Lynch syndrome context exhibits high MSI and TMB. According to these biological features, it could be considered an immune hot tumor. However, the profiles depicted did not match the clinical outcomes reported in the leading studies investigating the efficacy of immunotherapy in UTUC [7]. Again, this is indirect evidence that a significant knowledge

REVIEW

syndrome patients. Herein, we report Lynch syndrome-related objective response rates between 46 and 71% for colorectal cancer and 14–100% for noncolorectal cancer in unselected cohorts as well as an overview of the Lynch syndrome case reports. To date, no difference in the response rates has been reported between Lynch syndrome and sporadic MSI cancer patients.

Therkildsen, Clin and Experimental Gastroenterology 2021

Current Advances in Immune Checkpoint Inhibition and Clinical Genomics in Upper Tract Urothelial Carcinoma: State of the Art

Gianluigi Califano ^{1,2}, Idir Ouzaid ², Paul Laine-Caroff ², Arthur Peyrottes ², Claudia Collà Rux Benjamin Pradère ³, Vincent Elalouf ⁴, Vincent Misrai ⁵, Jean-François Hermieu ², Shahrokh F. ⁵ and Evanguelos Xylinas ^{2,6,*}

Open Access Full Text Article

An Update on Immune Checkpoint Therapy for the Treatment of Lynch Syndrome

Efficacy of Immune Checkpoint Inhibitors in Upper Tract Urothelial Carcinomas: Current Knowledge and Future Directions

Jonathan Thouvenin ^{1,2,*}, Nieves Martínez Chanzá², Omar Alhalabi ³, Hervé Lang⁴, Nizar M. Tannir³, Philippe Barthélémy¹ and Gabriel G. Malouf ^{1,*}

primary tumor location. Actually, sporadic UTUC has a luminal–papillary T-cell-depleted contexture and activated FGFR3 signaling. In addition, upregulation of FGFR3 in UTUC seems to be associated with a lower CD8 T-cell gene signature and, more interestingly, it has been shown to be important in shaping the observed T-cell-depleted phenotype [38]. Consequently, sporadic UTUC should frequently be characterized by an immune desert profile and refractoriness to immunotherapy. In contrast, UTUC developed in a Lynch syndrome context exhibits high MSI and TMB. According to these biological features, it could be considered an immune hot tumor. However, the profiles depicted did not match the clinical outcomes reported in the leading studies investigating the efficacy of immunotherapy in UTUC [7]. Again, this is indirect evidence that a significant knowledge

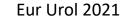
REVIEW

syndrome patients. Herein, we report Lynch syndrome-related objective response rates between 46 and 71% for colorectal cancer and 14–100% for noncolorectal cancer in unselected cohorts as well as an overview of the Lynch syndrome case reports. To date, no difference in the response rates has been reported between Lynch syndrome and sporadic MSI cancer patients.

ICI inhibitors are now widely used in daily practice to treat urothelial carcinoma patients. Based on the recent advancement in the comprehension of the molecular biology of UTUC and the differences between bladder UC and UTUC, further studies focused on UTUC patients are needed to personalize the therapeutic approach and find new treatment combinations.

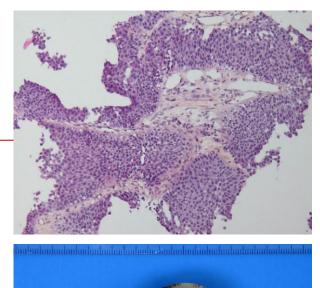
Therkildsen, Clin and Experimental Gastroenterology 2021

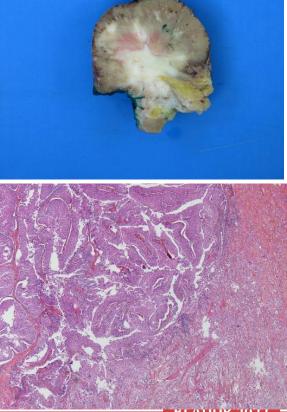
Screening

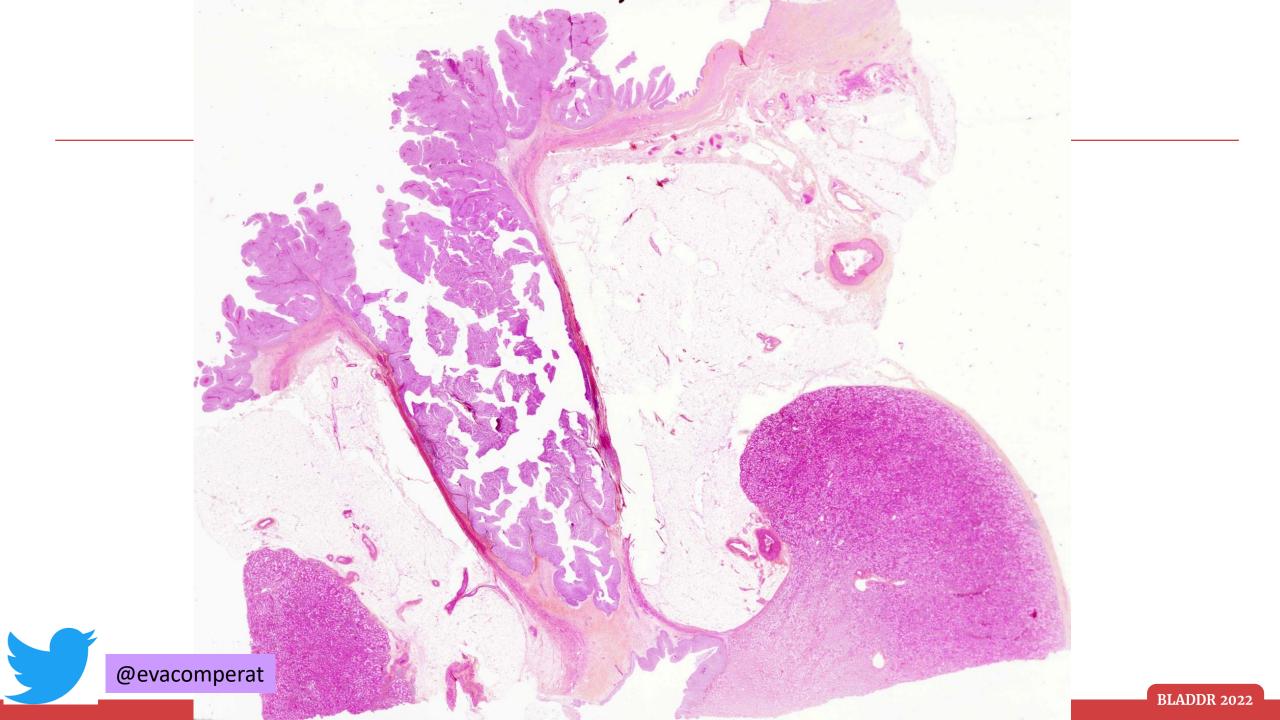

- Which population?
- All known LS patients
- No consensus about screening
- Only hMSH2 mutation carriers?
- Patients with a family history of BC
- Starting at age ...? (25-50y suggested)
- Urinary cytology
- Urinanalysis
- Abdominal ultrasound-CT

Eur Urol 2021

Screening


- Which population?
- All known LS patients
- No consensus about screening
- Only hMSH2 mutation carriers?
- Patients with a family history of BC
- Starting at age ...? (25-50y suggested)
- Urinary cytology
- Urinanalysis
- Abdominal ultrasound-CT


If newly diagnosed multidisciplinary management



Take home

- Histology → same, but caution!!
 - Tumor heterogeneity
 - Same factors of risk
- Different genetic alterations in bladder und UUT
 - TP53/FGFR3
- Bladder and UTUC
 - Different molecular groups predominant
 - UTUC test MSI+++
- If both tumors present
 - Clonal relationship
- Disparate twins....

